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ANALYSIS AND OPTIMAL DESIGN OF PRESSURIZED,

IMPERFECT, ANISOTROPIC RING-STIFFENED CYLINDERS

ABSTRACT

Development of an algorithm to perform the structural analysis and op-
timal sizing of buckling resistant, imperfect, anisotropic ring-stiffened cylin-
ders subjected to axial compression, torsion, and internal pressure is
presented. The structure is modeled as a branched shell. A nonlinear
axisymmetric prebuckling equilibrium state is assumed which is amenable to
exact solution within each branch. Buckiing displacements are represented
by a Fourier series in the circumferential coordinate and finite elements in
the axial or radial coordinate. A separate, more detailed analytical model is
employed to predict prebuckling stresses in the flange/skin interface region.

Results of case studies indicate that a nonlinear prebuckling analysis is
needed to accurately predict buckling loads and mode shapes of these cyl-
inders, that the rings have a greater influence on the buckling resistance as
the relative magnitude of the torsional loading to axial compression loading
is increased, but that this ring effectiveness decreases somewhat when
internal pressure is added.

The enforcement of stability constraints is treated in a way that does not
require any eigenvalue analysis. Case studies performed using a combina-
tion of penalty function and feasible direction optimization methods indicate

that the presence of the axisymmetric initial imperfection in the cylinder wall
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can significantly affect the optimal designs. Weight savings associated with
the addition of two rings to the unstiffened cylinder and/or the addition of
internal pressure is substantial when torsion makes up a significant fraction

of the combined load state. - .
Assumption of cﬂticqlity of fhe sta!ai!ity 'constraints and neglect of the
iﬁstress constraints during the optimal sizing of jhgfciylinders produced de-
signs that nevertheless satisfied all of the stress constraints, in general, as
gvell as the stability constraints. Sub§qquentre-sizingof one cylinder to sat-
isfy a violated in—plaﬁe matrix cracking C,;o_",sff;?,i",t resulted in an optimal de-
sign that was 49% heavier than the optimal design produced when this
:constr,aintnwgs,jfgnqred.

The additional internal pressure necessary to produce a violation of a
‘stress constraint for each optimal design was calculated. Using an unsym-

metrically laminated ring flange, a substantial increase in the strength of the

~ flange/skin joint was observed.
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Chapter 1
INTRODUCTION, OBJECTIVE AND BACKGROUND INFORMATION

1.1 Introduction

Significant advancement in the state-of-the-art of analysis and design of advanced
composite materials and structures has led aerospace vehicle manufacturers to incorpo-
rate increasing amounts of composite structure into new vehicle designs. Motivated by
the potential for significant weight savings and the possible replacement of complicated
structural assemblies by single, co-cured composite components, design engineers and
researchers today seek to incorporate composite materials into primary load-bearing
structure. One candidate for such an application is the fuselage of next-generation
transport aircraft, a stiffened cylindrical shell. The problem that confronts the manu-
facturer is to determine the material distribution among the cylinder skin and stiffening
elements resulting ina weight-efficient vehicle that can withstand the imposed loads.
Using laminates made of advanced composite materials, the designer has much more
flexibility than he has with metals in that he can tailor the strength and stiffness of in-
dividual structural components by varying the ply orientations and/or thicknesses of the
layers comprising the laminate. This type of tailoring, along with optimum sizing of
the stiffening elements, yields a very efficient structural design. Since the cost of com-
posite structure fabrication today is still relatively high, it is prudent to take advantage
of this tailorability and use composites to their full potential. However, many important
technological issues must still be resolved. In their report, Jackson, et. al.! propose a
full scale analysis, design and test effort to qualify advanced composite structure for
use in the fuselage of both civil and military transport aircraft. They present an ex-
haustive list of technical issues which would need to be addressed before such structure
could be qualified for flight. Dickson and Biggers? addressed many of these issues
while successfully designing and building a full scale advanced composite stiffened

panel. Industrial interest in design optimization of such panels led to the development
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by Bushnell®* of PANDA and PANDA2 , two computer programs which aid the engi-
neer in the design of minimum weight stiffened panels.

The work described in this document outlines the development of a methodology
to perform the structural analysis and minimum weight structural sizing of the lami-
nated fiber reinforced composite stiffened cylinder depicted in Fig. 1.1.1. The problem
can be described as follows. First, the structural analysis must contain sufficient de-
tail to provide reliable estimates of response quantities that constrain the design. For
example, as will be discussed in séction 2.2, details such as initial geometric imperfec-
tions and the deformation of stiffener cross-sections, phenomena typically ignored or
addressed in only an approximate manner, can have a significant effect on the buckling
loads of shell structures. These buckling loads generally represent critical constraints
on the design of thin-walled structures. Second, the structural analysis must be made
efficient enough to be incorporated into a structural sizing algorithm which may re-
quire the performance of several hundred structural analyses. Actual incorporation of
the structural analysis into a structural sizing algorithm represents the final step in the

process.



1.2 Objectives

Current computer programs written for optimal sizing of stiffened cylinders suffer
from one or more of the following simplifying assumptions

1. A linearized prebuckling equilibrium state.

2. Modeling the stiffeners as beam elements.

3. A perfect bond of zero thickness between the shell wall and stiffener

attachment flange.

These commonly made assumptions constitute serious deficiencies for optimal design,
as will be discussed in greater depth in section 2.2. The main purpose of the present
study is to investigate the optimal sizing of anisotropic, ring-stiffened cylinders us-
ing a structural analysis devoid of these deficiencies. Several objectives will be met
as part of this investigation. The first objective of the present study is to develop an
efficient structural analysis to predict prebuckling deformations, prebuckling stresses,
and buckling loads of anisotropic, ring-stiffened circular cylindrical shells subjected
to axial compression, torsion, and internal pressure loadings. The structure is mod-
eled as a branched shell. A nonlinear axisymmetric prebuckling equilibrium state is
assumed which is amenable to exact solution within each branch. Axisymmetric geo-
metric imperfections are included. The second objective is to implement the structural
analysis into a structural sizing algorithm that will be used to develop minimum weight
ring-stiffened cylinders for a future experimental investigation. The effects of initial
geometric imperfections and pressurization on the minimum weight designs are inves-
tigated. The final objective is to evaluate local stresses in the area adjacent to the ring-
to-shell interface of the optimal designs. The effects of an imperfect, geometrically
nonlinear prebuckling equilibrium state and internal pressurization on optimal stiffened
shell designs, and on the ring/shell interface stresses in these designs, are technical is-
sues expected to directly affect the fuselage designs of next-generation transport air-
craft.



1.3 Background Information
1.3.1 Mathematical Models of Stiffened Shell Structures

As described in the text by Niu® three major buckling modes constraining the de-
signs of stiffened shell structures such as an aircraft fuselage are; local instability of
the stiffener segments, panel instability, and general instability. Local instability in-
volves buckling of the individual parts of the stiffeners (flanges, webs, etc.), panel
instability implies buckling of the shell in the panel length between two rings, and
general instability implies that the rings, not being rigid enough to enforce node lines
along their lines of attachment to the shell, buckle along with the rest of the cylindrical
shell. Traditionally, these three types of instability are analyzed as separate phenomena.
Local instability is evaluated by modeling a stiffener flange or web as a plate segment
having boundary conditions assumed to result in c&#&ﬁ&ve buckling load estimates
such as simple as opposed to clamped or elastically restrained supports. Panel instabil-
ity is evaluated by smearing the stiffnesses of any longitudinal stiffeners into an equiv-
alent orthotropic shell layer and treating the shell segment between rings as a simply
supported monocoque cylinder. General instability has been traditionally evaluated by
smearing both the stringer and ring stiffnesses out over the entire shell surface. With
the advent of more powerful computers and analytical techniques, the smeared model is
slowly giving way to models which treat the stiffeners as discrete elements.

1.3.2 Equilibrium and Buckling Analyses of Stiffened Cylinders

A significant amount of literature devoted to the study of buckling of shells de-
scribes the advantages and disadvantages of calculating buckling loads based on “clas-
sical” and “nonclassical” theories. In his survey paper, Bushnell® provides an excellent
explanation of these two types of theories. In the “classical” type of analysis, the pri-
mary (or prebuckled) equilibrium state of the structure is assumed to be free of any
bending deformations (rotationless). This greatly simplifies the analysis. In the classi-
cal buckling analysis of cylindrical shells, effects of the boundaries on the prebuckled

4



equilibrium state are ignored and the shell is assumed to be perfectly smooth (free of
any initial geometric imperfections) so that a pure membrane state of stress can be as-
sumed to exist in the unbuckled cylinder. However, the effects of boundary conditions
are considered in the solution of the equations governing the stability of the structure;
hence, there is an inconsistency between the buckling analysis and the analysis of the
prebuckled equilibrium state. This inconsistency can be eliminated by abandoning the
assumption of a pure membrane prebuckled equilibrium state - a characteristic of many
“nonclassical” theories. In an axisymmetrically loaded cylindrical shell, bifurcation
buckling can occur from an axisymmetric prebuckled equilibrium configuration into a
general asymmetric configuration. The axisymmetric prebuckled equilibrium state may
include a substantial amount of bending, especially if geometric imperfections in the
shell wall are accounted for. Substantial bending in the presence of membrane loading
means that the deformation is a nonlinear function of the applied load; hence, the equa-
tions governing the stability of the axisymmetric equilibrium configuration are non-
linear functions of the applied load - & nonlinear buckling eigenvalue problem. This
type of eigenvalue problem is in contrast to the linear buckling eigenvalue problem
generated when th¢ prebuckling equilibrium state is assumed to exhibit geometrically
linear behavior as in the case of classical buckling of a cylindrical shell. The load-
displacement curve describing the nonlinear prebuckled equilibrium state may contain
points at which bifurcation occurs (intersection of equilibrium paths), or the curve may
reach a relative maximum. This relative maximum is referred to as a limit point. For
elastic, conservative systems, buckling occurs either at a bifurcation point or a limit

point.

A major factor complicating the theoretical analysis of both the prebuckling equi-
librium state and the stability of shells is the complexity of the governing equations.
Unlike plates, coupling between flexural and membrane behavior cannot be ignored
even when the deformations are extremely small; furthermore, there is no universally

accepted set of equations governing shell response as there is in the case of plate the-
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ory. The form of the strain-displacement equations is a particular focal point of con-
troversy; researchers tend to disagree as to which terms in these equations must be re-
tained and which ones can be neglected. The result of this controversy is a large num-
ber of theories ranging from the most complicated (Fliigge’s) to the simplest (Donnell
- Mushtari - Vlasov). As will be discussed in Chapter 2, the literature is replete with
information to help guide those interested in selecting an appropriate theory for a par-
ticular problem. ' '

In most applications, a thorough prebuckling stress analysis is warranted in ad-
dition to the buckling analysis. Under certain types of loads, thin shells can exhibit
regions of high local stress. In metals, yielding of the material occurs relieving these
stresses; however, in brittle materials, such as advanced composnes stress relief must
come from other sources such as transverse matrix cracking, local fiber failure and de-
lamination. Experimental work, such as that xeportcd by Starnes, et. al.’, indicates that
the region adjacent to slnh};t}f;&”attachmcnt areas warrants spec131 attention since
this is typlca]ly a region where high local stresses occur. It is, therefore, possible that
a certain conﬁguranon rmght fail due to such a stress concentration before buckling
occurs, requiring a thorough and accurate prebuckling stress analysis to predict such a

failure.
1.3.3 Structural Optimization and Mathematical Programming

Engineers originally relied on fully stressed and/or simultaneous failure mode de-
sign philosophies in order to develop minimum weight designs. Then Schmit® pre-
sented a landmark paper in 1960 proposing the application of nonlinear mathemati-
cal programming techmques to develop minimum weight structural designs satisfying
a specified set of constraints with the aid of a dlgltal computer. He coined the term
structural synthesis (today more commonly referred to as structural optimization) to de-
scribe the procedure and showed that in many cases the fully stressed / simultaneous
failure mode design approaches did not produce tmlyopnmum designs. Engihééfs gen-
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erally apply structﬁral optimization techniques to either minimize weight or maximize
performance, which becomes the objective function of the mathematical programming
problem. The constraint set reflects other structural requirements or restrictions that
need to be imposed to achieve a usable design. Mathematical programming (MP) tech-
niques used to solve structural optimization problems are of one of two types - indirect
techniques and direct techniques. Indirect techniques involve replacing the constrained
minimization (or maximization) problem with a set of unconstrained problems. These
are called sequential unconstrained minimization techniques or SUMT and include the
penalty function methods. Direct MP techniques deal with the objective and constraint
functions individually. In either MP technique a method must be chosen to minimize
or maximize a nonlinear function of several variables. Newton’s method, certainly the
most well-known, requires formulation of the Hessian matrix (second derivatives of
the objective function and constraints with respect to the design variables); hence, it is
called a second order method. Since second derivatives tend to be computationally ex-
pensive to calculate, first order methods involving only first derivative (gradient) infor-
mation tend to be more popular. Derivative information is generally obtained exactly,
or approximately using finite differences. If it is not feasible to calculate any deriva-
tive information at all, a zero order method, requiring function evaluations only, may
be used.

The optimum designs generated by a structural optimization algorithm may or
may not be unique. The design variables and the constraints define what is known as a
design space. If this design space is convex, then only one point in this space will sat-
isfy the conditions of optimality and the optimum design is called a global optimum.
The necessary conditions are generally referred to as the Kuhn-Tucker conditions. (See
section 5.1 of Ref. 9. A discussion of the Kuhn-Tucker conditions is presented in sec-
tion 6.8). This is true, for example, of problems where the objective function and all
the constraints are linear functions of the design variables. For problems where the ob-

jective function and/or the constraints are nonlinear functions of the design variables,
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convexity of the objective function and constraints need to be established. Many struc-
tural optimization problems result in a design space which is generally nonconvex. In
this case many points satisfying the Kuhn-Tucker conditions may exist in the design
space. Of these points, the one resulting in the true extremum of the objective function
is the global optimum; the other points are called relative optima or relative minima.
Alternative optima or alternative minima are points in the design space satisfying

the Kuhn-Tucker conditions yielding the same value of the objective function as other

optima.



Chapter 2
REVIEW OF PERTINENT LITERATURE

2.1 Shell Theories

A wide variety of different theories exists upon which to form the basis of a thin
shell structural analysis. The publication by Leissa!® contains an excellent compar-
ison of the various theories used in linear shell analysis. Such a comprehensive dis-
cussion of the various geometrically nonlinear theories has yet to be published. Of the
theories employed in the analysis of circular cylindrical shells, the three most com-
monly used are (in order of decreasing complexity): the theory of Fliigge!!, the the-
ory of Sanders'?, and the theory of Donnell’** (also known as Donnell-Mushtari-
Vlasov or DMV theory). These theories diverge widely in their treatment of the shell
strain-displacement equations and the expressions for the force and moment resultants.
Fliigge’s theory has been criticized on the grounds that the equations keep the numer-
ically small terms of order h/Rq (h is the shell thickness and R, is a radius of cur-
vature). Recognition of the complexity of Fliigge’s equations and a desire to generate
a practical solution to the problem of the buckling of a long thin-walled cylinder un-
der torsional loading led L.H. Donnell to propose a relatively simple set of equations
governing the response of circular cylindrical shells. These equations are almost ex-
actly the same as those governing the response of a flat plate except for the presence
of a term W/R in the expression for the circumferential strain and a term N, /R in the
equation expressing equilibrium of forces normal to the shell surface (W is the radial
displacement, N, is the circumferential stress resultant, and R is the cylinder radius).
One important aspect of Donnell’s equations is that in the strain-displacement equations
and the expressions for the stress resultants and stress couples, the following approxi-

mation is made
Z
1+ (E) ~1 (2.1.1)

where z is a coordinate in the through-the-thickness direction. Thus, the through-the-
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thickness variation of the lengths of the circumferential fibers is neglected. Donnell
states in his paper that should any of the terms neglected in his theory be retained
these terms would be multiplied by either k(h/R)? or (1/n)?, where h is the shell
thickness, k is a material property-dependent constant of order 1, and n is the number
of circumferential waves in the buckling mode shape. Thus it would appear that DMV
theory would be adequate for thin shells with large n. Donnell achieved excellent cor-
relation of his theory with experiments. Some insight as to why this was so was pro-
vided by the work of Marguerre!® on shallow cylindrical panels. Published about the
same time as Donnell’s paper, Marguerre's equations were strikingly similar. The sim-
ilarity in the equations governing the response of Marguerre’s shallow panels and the
buckling of Donnell’s cylinders, along with the good correlation Donnell achieved be-
tween his theoretically and experimentally determined buckling loads, can be attributed
to the fact that the cylmder buckled into a conﬁguranon containing many circumfer-
~ ential waves, behaves hke a series of shallow shells lmked at node lines. The inher-
ent simplicity of DMV theory has made it the basis of many papers on the structural
analysis of cylindrical shells up to the present day. In order to avoid the deficiencies
of DMV theory without resorting to the comphcauon of Fliigge’s equations, Sander’s
theory may be used. In Sapdgr s theory, several ‘@"‘35, qulvmg the circumferential
displacement and its derivatives in the strain-displacement eqﬁations that are ignored in
DMV theory are ,:c;tained.f ,

7 In most pracucal apphcauons, based on results pubhshed in the literature, use of
a theory more comphcated than DMV theory does not appear to be justified. In 1955,
Hoff'® evaluated closed-form solutions for the linear bendmg response of isotropic cyl-
indrical shells based on both Fligge and DMV theories. He showed that in the case
of the ax1symmetnc response both theories were precisely equivalent for all values of
geometncal parameters for which Fliigge’s theory was valid. Dong, Pister and Taylor!”
extended this work to shells made of fiber composite laminates. Studying the linear,
axisymmetric bending response of generally laminated cylinders, they showed that re-
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sults based on DMV theory were practically the same as those based on Fliigge's the-
ory provided that the laminate was constructed of laminae having ratios of fiber direc-
tion Young’s moduli to transverse direction Young's moduli (E}/E) less than 1000.
Unfortunately, no evidence of a study comparing the nonlinear axisymmetric bending
response of cylindrical shells could be found in the literature. Most comparisons of
various nonlinear shell theories that appeared in the literature have been performed in
the context of solving the equations governing the stabslity of prebuckling equilibrium
configurations.

Wul® compared the buckling loads from an assumed membrane prebuckled state
of laminated cylinders subject to combined loads of axial compression, torsion, and
lateral pressure calculated using DMV theory to those loads calculated using Fliigge's
theory and found that, when the cylinder buckled into five circumferential waves or
more, the difference in buckling loads predicted using the two theories was less than
3%. Most recently Simitses, et. al.'?"?° compared the limit point loads of metallic
and laminated cylindrical shells under axial compression calculated using a geometri-
cally nonlinear structural analysis based on DMV theory to those calculated based on
Sander’s theory. In the special case of a shell made of a single layer of Boron/Epoxy
with all fibers running in the hoop direction, buckling loads calculated using DMV the-
ory were as much as 13% higher than those calculated using Sander’s theory for cylin-
ders having L/R ratios as low as 2. However, for most practically laminated shells
they found negligible differences in the results based on the two theories for thin cyl-
indrical shells whose postbuckled shapes contained four or more circumferential waves

and whose L/R ratios were less than five.
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2.2 Analysis of Unstiffened and Stiffened Cylindrical Shells

Efficient structural designs must be based on mathematical models which are real-
istic. This is especially true of designs generated in an automated structural optimiza-
tion algorithm since the algorithms tend to exploit the simplifications in the model.
Without adequate realism built into the model, large margins of safety may be nec-
essary to insure that neglect of structural details does not result in unexpected failure
of the as-designed structure. The citations below are included to provide some justi-
fication for the level of detail included in structural analysis used in this study. This
discussion is not intended to be an exhaustive review of the literature pertaining to the

analysis of cylindrical shells
2.2.1 Unstiffened Isotropic Cylindrical Shells

After publication of Donnell’s paper in 1933 (Ref. 13), research focused on ap-
plying Donnell’s equations to calculating buckling loads of isotropic cylinders sub-
ject to other types of loads, particularly axial compression, since it was felt that this
would yield insight into the response of the compression side of a bent aircraft fuse-
lage. Assuming a linear prebuckled equilibrium state, Seide and Weingarton®' showed
in 1961 that the bending buckling load of an isotropic cylinder was nearly the same as
the buckling load of the same cylinder under pure axial compression. Crate, et. al.?
extended the experimental work of Donnell in 1946 to isotropic cylinders loaded in
torsion with internal pressure. They found that the pressure increased the buckling
load significantly and published an interaction formula applicable to design. It is well-
known that the correlation of the results of a classical buckling analysis to experimen-
tal results for cylinders subject to axial compression is too poor for such an analysis
1o be used as the basis for design. It is generally believed that there are two major
reasons why this is so, one pertaining to the existence of initial imperfections and the
other to the inconsistency of boundary conditions used in the prebuckling and buckling
analyses. Donnell and Wan?? showed, using the results of a large deflection analysis,
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that small initial imperfections in the form of an initial stress-free radial displacement
could result in buckling loads which are much lower than the classical value. In 1963,
Koiter?* showed that initial imperfections in the shape of the classical axisymmetric
buckling mode,

W, = p cos(g.z/R), (2.2.1.1)

could reduce the axial compression buckling load by as much as 40% when p, the
imperfection amplitude, was as small as one-tenth of the shell wall thickness. In Eg.
(2.2.1.1), z is the axial coordinate of the cylinder, R is the radius of the cylinder,
g* = 12(1 — v®)R?/h?, v is Poisson’s ratio, and k is the shell thickness. Koiter’s
results also indicate that the axisymmetric buckling mode imperfection shape is the
most degrading shape of all possible harmonic, axisymmetric shapes. Hutchinson?®
extended Koiter’s work by adding one asymmetric term to Koiter’s axisymmetric buck-
ling mode imperfection shape and calculating buckling loads of long cylinders subject
to axial compression and internal pressure using DMV theory and ignoring the effects
of the boundaries. Hutchinson concluded that internal pressure “ironed out” the asym-
metric imperfections but not the axisymmetric ones, resulting in the axisymmetric im-
perfection having the dominant effect. An explanation for the degrading effect of ax-
isymmetric imperfections can be found in the 7papcr by Thurston?®. He points out that
while the axial stress resultant remains fairly constant up to buckling, the circumferen-
tial stress resultant increases in a nonlinear manner. There is a strong coupling between
this increasing circumferential stress resultant and asymmetric buckling modes which
triggers premature buckling compared to classical linear theory. The bending of the
shell wall with imperfections creates regioné where the circumferential stress resultant
may be compressive, which is an additional destabilizing effect.

Without including the effects of initial geometric imperfections, Stein?" ‘performed
a theoretical buckling analysis from a geometrically nonlinear axisymmetric prebuck-
led state on a perfect cylinder under axial compression using DMV theory and showed
that maintenance of consistent boundary conditions in the prebuckling and the buck-
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ling analyses could result in buckling loads which are as much as fifty percent lower
than those predicted using classical theory. He also showed that the addition of in-
ternal pressure tended to raise the buckling load up to the classical value. Almroth?®
added axisymmetric imperfections to Stein’s analysis and allowed for elastic restraint
at the shell boundaries. He evaluated imperfections that were nonperiodic functions of
the axial coordinate as well as those that were periodic functions and concluded that
the nonperiodic imperfections generally resulted in less dramatic drops in the buckling
Joad. The work of Koiter, Stein, Almroth, and others led Tennyson, et. al.?” to propose
abandoning the inefficient practice of designing cylindrical shells using empirically es-
timated buckling load reduction factors in favor of basing designs upon an analysis

of cylinders possessing axisymmetric wall imperfections. They showed, through the-
oretical analyses and experiments, that the Koiter type of imperfection shape (see Eq.
(2.2.1.1)) with an amplitude equal to the root-mean-square of radial deviations from a
pre-determined ideal shape measured in the cylinder wall, could adequately account for
the effect of initial 1mperfecuons They also included a two term asymmetric imperfec-
tion, similar to that of Hutchinson, in their theoretical analysns and concluded that the
effect on the axial compressmn bucklmg load of the asymmetnc term was relatively
small compared to the eﬂ'ect of the axlsymmemc component. o

222 Unsnﬁ'ened Anisotropic Cylindrical Shells

As the state-of-the-art of the ana.lysns of unstiffened isotropic cylinders advanced,
more and m&;;&enmn began to focus on the bchavnor of cyhndncal shells made of
laminated fiber éomposxte materials. Dong, Pister, and Taylor" and Ambartsumyan3®
published some of the earhest work in the area of stress analysis of these shells, the

former paymg pameular attennon to the influence of bending-stretching coupling of

the shell wall laminate on the response of the overall structure. The paper by Cheng
and Ho®! presented the results of some of the earliest work performed in the area of
buckling of generally laminated cylindrical shells. They performed a classical type of
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analysis using a combination of Fliigge’s theory for the governing differential equations
and DMV theory for the boundary conditions. Motivated by the work of Seide and
Weingarton in the area of bending buckling of isotropic cylinders, Holston3? performed
a similar analysis on cylinders made of laminated composite materials. He used linear
anisotropic shell theory for the prebuckling analysis, ignoring the effects of boundary
conditions, and applied both Fliigge’s theory and DMV theory to the stability problem.
He concluded that the bending/compression interaction diagram was linear and that the
buckling load of the cylinder under pure bending was very nearly equal to that of the
cylinder under pure axial compression, a result similar to the one obtained for isotropic
shells earlier (Ref. 21). Thus it appeared that the study of laminated cylinders under
axial compression could provide information applicable to the study of the bending of
a laminated composite cylindrical shell.

Card®? studied the imperfection sensitivity of laminated cylinders subject to axial
compression with the goal of finding the winding angle (a) of a balanced +a lami-
nate configuration that yielded cylindrical shells with the lowest imperfection sensitiv-
ity. He used a geometrically nonlinear axisymmetric prebuckling analysis in order to
study the effects of prebuckling boundary conditions that were consistent with those
applied in the buckling analysis and concluded that for some laminate configurations
this consistent approach yielded buckling loads which were as much as 25% below
those calculated using classical theory. However, the results of the classical analysis
for other laminate configurations were extremely close to the results obtained from his
consistent analysis. The result of Card’s buckling load and postbuckling coefficient
calculations (postbuckling coefficients are an estimate of the slope of the postbuck-
led load-displacement curve at the bifurcation point, and are used as a measure of im-
perfection sensitivity) showed that a cylinder having a shell wall angle a equal to 45
degrees had the lowest imperfection sensitivity; furthermore, he concluded that the lam-
inate configurations yielding the highest buckling loads generally were also the most
imperfection sensitive. The results of a series of experiments qualitatively verified the
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theoretical predictions, indicating that the disparity between buckling tests and theo-
retical predictions for anisotropic shells was comparable to that of isotropic shells for

some laminates.

Work such as Card’s led Tennyson, et. al.3* to include the effects of an axisym-
metric imperfection shape in their theoretical buckling analysis. They derived the clas-
sical axisymmetric mode shape for a generally laminated cylindrical shell, and used
this as the imperfection shape in the analysis of cylinders with a [6,0, ——6) laminate.
Including imperfections with amplitudes as small as ten percent of the cylinder wall
thickness in the analysis, they calculated buckling loads which were as much as 60%
lower than the buckling loads calculated using the classical approach. Plotting the
buckling load versus 6, with the imperfection amplitude as a parameter, they also de-
monstrated that the presence of initial imperfections negated the theoretical buckling
load increase, resulting from a judicious choice of 8 predicted based on classical the-
ory. Buckling loads for imperfect cylinders proved to be insensitive to the lamination
angle 8 for the type of laminate under consideration. This correlated with Card’s ob-
servation that the laminates of perfect cylinders that resulted in the highest buckling
loads also resulted in structures having the highest imperfection sensitivity. Booton®®
extended Tennyson’s work to study cylindrical shells under combined loads. He em-
ployed DMV theory, axisymmetric nonlinear prebuckling, an axisymmetric initial ge-
ometric imperfection of the same type as that used earlier by Tennyson, et. al.2", and
clamped boundary conditions in the prebuckling analysis consistent with those of the
buckling analysis. The purpose of the study was to develop a general set of buckling
intex;aéiion diagrams for various load combinations for use in the design of laminated
cylinders. Booton found that the interaction diagrams could vary dramatically from
one stacking sequence to anothéf; furtherm&é, he found that in a few special cases
the interaction diagram was convex toward the origin, rendering the commonly used
approach of approximating the interaction diagrams with straight lines nonconserva-
tive. Perhaps more significant were the results of a series of experiments performed
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as part of the study. He obtained excellent theoretical/experimental correlation, using
his theoretical analysis to predict buckling loads which were typically within 10% of
the corresponding t;.xperimemally observed values. Jones and Henneman®® applied an
analysis similar to Stein’s?” to study the effect of a geometrically nonlinear prebuck-
led state with consistent boundary conditions only (no imperfections included) on the
buckling loads of cross-ply laminated cylinders subject to axial compression or lateral
pressure (not in combination). They concluded that the effects were negligible for that
particular family of laminates. In 1985 Simitses, et. al®? published the results of their
nonlinear structural analysis of simply supported four and six ply laminated cylindri-
cal shells loaded in torsion and axial compression. They discovered that the lamina
stacking sequence had a pronounced effect on the magnitude of the limit load and the
imperfection sensitivity. The samples were more imperfection sensitive under axial
compression than under torsion; furthermore, the laminates with the higher limit point

loads were also more imperfection sensitive.
2.2.3 Stiffened Isotropic Cylindrical Shells

What is generally regarded as the earliest work in the theoretical analysis of stiff-
ened metal cylinders was published by van der Neut®® in 1947. Van der Neut calcu-
lated theoretical buckling loads of stiffened cylinders under axial compression using
two different mathematical models. In the first model he smeared the stiffnesses of the
rings into an equivalent orthotropic shell layer while in the second model he treated
the rings as discrete curved beams. The stiffnesses of the longitudinal stiffeners were
smeared in both models. Comparing the theoretical buckling loads calculated using
both models, van der Neut concluded that the average number of rings lying within one
half-wave length of the buckled mode shape must be greater than 2 for the buckling
loads of the model with the smeared rings to be approximately the same as the corre-
sponding buckling loads of the model with discrete rings. In many applications, such
a close ring spacing is not practical. By including stiffener centroid eccentricity in his
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model, van der Neut showed that placing the centroid at the shell wall middle surface
in the theoretical analysis could result in large errors in the buckling load if the cen-
troid of the stiffeners in the actual structure was offset from this middle surface. He
also postulated that, due to the large number of circumferential waves in the buckle
pattern, a cylinder under axial compression would possess almost the same buckling
load as a cylinder subject to bending.

In 1950 Stein, et. al.3® published the results of a theoretical and experimental
study of simply supported ring-stiffened cylindrical shells under torsional loading. Us-
ing DMV theory to estimate the panel buckling loads in his analysis (assuming the
rings possessed no torsional stiffness), he achieved good correlation (85%) with the
experiments. Stein noted that the increasing the size of the rings tended to drive the
buckling load up until the buckled mode shape possessed node points at the ring loca-
tions, noting that rings effectively resisted the formation of the diagonal buckles asso-
ciated with torsional buckling. Block#® conducted a theoretical study of similar ring-
stiffened cylindrical shells subject to axial compression. He modeled the rings as dis-
crete beam elements having centroids coincident with the shell wall midplane. Block
concluded that use of such a detailed mathematical model was not justified; model-
ing the region between rings as an unstiffened, simply supported cylinder for panel
buckling calculations and using the smeared technique for general buckling calculations
produced adequate results for the particular cases studied. Haftka and Singert! also
modeled the rings as dxscrete beam elemems in studymg the buckhng of nng-suffened
cyhnders subject to axial compressxon and pressure loadings. In the axial compression
case, they noted that unless the rings were extremely weak and their spacing extremely
small panel buckling was the critical buckling mode; furthermore, adding rings to the
unstiffened shell had a very ry small effect on the buckhng load. This is because the
buckled mode shapes of such structures typically possess many axial waves so that, un-
less the ring spacing is small, the rings tend to lie on node lines of the buckled wave-
form. Baruch and Singer#?, using the smeared technique to calculate general buckling
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loads only, studied stiffened cylindrical shells under external pressure loads. As van
der Neut had concluded for such shells under axial compression, they concluded that it
was very important to include stiffener eccentricity in the mathematical model. Block,
Card, and Mikulus*® drew the same conclusion for cylindrical shells under combined
axial compression and pressure using the smeared technique. Still focusing on gen-
eral instability only, Hutchinson and Amazigo* calculated postbuckling coefficients for
stiffened cylindrical shells loaded in axial compression or external pressure using DMV
theory and the smeared technique. They demonstrated that cylinders subject to axial
compression stiffened with internal stringers only had near zero imperfection sensitiv-
ity while the same cylinders with internal rings only exhibited substantial imperfection
sensitivity.

Bushnell*5 addressed the issue of how much detail to include in the mathemat-
ical model used to calculate buckling loads of stiffened shells of revolution. Using
BOSOR4*S, a very accurate computer program based on a branched shell mathemat-
ical model, he showed that theoretical buckling loads and vibration frequencies could
be unexpectedly sensitive to modeling details such as prestress deformations and out-
of-plane stiffnesses of rings. ‘He also noted that rings and stringers could exhibit sig-
nificant prebuckling deformation leading to significantly unconservative buckling load
estimates based on mathematical models which fail to account for this deformation.

2.2.4 Stiffened Anisotropic Cylindrical Shells

Many analysis codes (such as BOSOR4) now include the capability of analyzing
laminated composite stiffened shells as well-as isotropic stiffened shells; however, the
state-of-the-art of the analysis of these stiffened shells is not as advanced as that of
isotropic shells. The paper by Jones*” presents the results of general buckling load cal-
culations for fiber composite cylinders with composite stiffeners subject to hydrostatic
pressure. The goal of this study was to observe the effects of stiffener eccentricity and
the bending-membrane coupling induced by an unsymmetrically laminated shell wall.
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Jones used the smeared technique and a classical buckling analysis based on DMV the-
ory in his work assuming a membrane prebuckled state and ignored the effect of mate-
rial bending and twisting coupling . He presented a single example which indicated
that the axial compression buckling load was sensitive to the degree of membrane-
bending coupling exhibited by the shell wall laminate. In 1975, Jones and Morgan*®
recognized that composite materials tend to possess different Young’s Moduli in ten-
sion than in compression and modified Jones’s analysis to include this phenomenon.
They studied cylinders subjected to various combinations of axial loading and lateral
pressure and found that the effect of the bilinear stress-strain relation on the buckling
load was small for most practical materials

Wang and Hsu#® studied the state of stress in prebuckled stiffened laminated cyl-
indrical shells subject to combinations of internal pressure, temperature change, and
axial load using a mathematical model with discrete beam elements representing the
stiffeners. A few examples are included to demonstrate the capability of their analy-
sis. One important detail shown on the charts that summarize the results of these ex-
amples is the existence of high strain gradients in the cylinder skin near the stiffening

elements.
2.2.5 Stresses and Strains Adjacent To Stiffeners

As mentioned in section 1.3.2, proper characterization of the stresses in areas of
high strain gradients may be important to the design of laminated composite structures.
In the case of the composite ring-stiffened cylinder, the ring/skin interface is one such
area. In the prebuckled equilibrium configuration, the rings must not separate from
the skin. Since the thin shell may be loaded by a combination of tangential loads and
normal pressure loads, a geometrically nonlinear prebuckling analysis is justified in
order to accurately predict forces and bending moments at the ring/skin interface. It is
assumed in the present study that the rings are adhesively bonded to the skin.

"Wang and Biggers®® developed an analysis code to be used in the design of flat
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panels with adhesively bonded stiffeners. The stiffeners of such panels tend to sep-
arate from the skin when the structure is postbuckled and/or subject to normal pres-
sure loads. To quantify this phenomenon, Wang and Biggers modeled the stiffener at-
tachment flange and attached skin as orthotropic plates whose deformations are cou-
pled through the presence of a thin, isotropic adhesive bond between them. They as-
sumed that the transverse shear and normal stresses in the bond were constant through
the thickness and that any tangential stresses could be neglected. The stiffener web
and supporting skin were modeled as distributed springs. The results of this analy-

sis showed that while the bond shear stresses (Tz; and 7,;) were more or less uni-
form across the step in thickness at the skin/flange interface, the bond normal stress
(0:) peaked sharply in this area. A narrow attachment flange resulted in a better de-
sign since wide flanges resulted in higher bond shear (7. ) stresses; furthermore, high
ratios of flange thickness to skin thickness resulted in higher bond stresses and thus
poorer designs. Wang and Biggers also showed that changing the lamina stacking se-
quence of both the flange and the skin could drastically affect the separation stresses.
In one case, switching a zero and ninety degree ply within the stiffener flange laminate
resulted in a forty-two percent increase in these stresses. Tsai®! presents an in-depth
analytical and experimental study of the problem of stiffener pull-off in curved, post-
buckled panels with co-cured stiffeners. He worked the problem using both a “maxi-
mum allowable pull-off stfength" abp’roach and a fracture mechanics approach to es-
timate the maximum strength of the specimens used in the experiments. Based on

his experimental results, Tsai determined that the strain energy release rate calculated
using the fracture mechanics approach was the controlling parameter for initiation of
skin/stiffener separation and that a failure criterion based on this quantity could be used
to determine skin-stiffener interface configurations resulting in maximum improvement

in ;;ull-off strength.

Hyer, et. al.52 performed a theoretical and experimental study of flat, stiffened
panels loaded by normal pressure in order to evaluate the effects of stiffener geometry
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and skin elastic properties on strain distributions in the skin/stiffener interface region.
They observed that a significant amount of bending of the stiffener attachment flange
and adjacent skin occurred due to pillowing of the skin and that the transition from
low to high strains occurred in a very narrow region. They also found that geometri-
cally nonlinear effects were important at pressures as low as 0.1 atm. and concluded
that the stress state in the region was truly three dimensional. Decreasing the ratio of
the bending stiffness of the stiffener attachment flange to that of the panel skin resulted
in attenuation of the stresses in this three dimensional stress state without significantly
affecting the global panel response since stiffener web height affected this response

to a much greater degree. They also found that the addition of a small amount of in-
plane biaxial tension load to the panel resulted in atienuation of the strain gradients.
Cohen and Hyer®® undertook the difficult task of attempting to rigorously characterize
the complex three-dimensional stress state in the comer region where the skin and stff-
ener meet. They discovered that a stress singularity existed in this region and quanti-
fied its severity by calculating a stress intensity factor. By tapering the flange to meet

~ the skin, they found that the magnitude of the stress intensity factor could be substan-
tially lowered.

Boitnott> studied, both theoretically and experimentally, the stress state at the
meridional edges of a long cylindrical panel subject to internal pressure using varying
degrees of fixity at these edges in order to approximate the skin of an aircraft fuse-
lage adjacent to a stringer. He employed nonlinear DMV theory to characterize the
high bending gradients generated by pillowing of the skin under pressure at a sup-
ported edge. The high bending gradients resulted in severe local stress gradients at
the supported edge which Boitnott concluded could only be accurately quantified us-
ing a geometrically nonlinear analysis. Boitnott also demonstrated that changes in the
lamina stacking sequence could strongly influence the character of these stress gradi-
ents. The results of his experiments showed that laminated panels tended to fail earlier
than metal panels of the same thickness since local yielding of the metal provided a
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measure of strain relief near the supported edge.
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2.3 Design of Unstiffened and Stiffened Cylindrical Shells

Past work completed in the area of design of stiffened cylindrical shell structures
included results generated by either systematically varying different design parameters
or by applying the techniques of structural optimization. There has not been a large
amount of research devoted to the design of unstiffened, isotropic, circular cylindrical
shells since only a single design variable, the shell wall thickness, is typically involved.
Hyman and Lucas®® studied buckling load maximization for designs where the wall
thickness could vary along the length of the cylinder. They showed that substantial
increases in structural efficiency could be realized using this technique. Most of the
research in the area of minimum weight design of isotropic cylindrical shell structures
has been devoted to such structures stiffened by rings and/or stringers.

2.3.1 Stiffened Isotropic Cylindrical Shells

As the state-of-the art of analyzing stiffened cylindrical shells advanced in the
early 1960’s, interest began to shift toward exploiting this advancement in order to
develop more efficient structural designs. Most of the results generated in this time
period were in the form of parametric studies which appeared at the end of papers pri-
marily devoted to analysis. For example, in their paper on the analysis of stiffened
‘cylindrical shells subject to external pressure loads, Baruch and Singer*? showed that
locating stringers on the extemnal surface of the shell wall resulted in higher general
buckling loads than if the stringers were located on the intemal surface. Block, Card
and Mikulus*® showed that, for stiffened cylinders under axial compression, both ex-
ternal stringers and external rings resulted in the highest general buckling loads. Con-
sidering that both of these observations were based on analyses employing the smeared
stiffener technique, they could have ramifications in the design of unstiffened lami-
nated composite cylinders; for example, a smeared set of stringers might approximate
a thick layer of zero degree plies. In 1966, Singer and Baruch®® presented the results
of a large number of trade studies. They showed that while external stringers resulted
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in higher general buckling loads, they also made the structure more imperfection sen-
sitive. Perhaps their most important observation was that given an optimally designed
structure, weight savings for a given load were less substantial than gains in the size

of the general buckling loads for a given weight. Bumns®?, analyzing stiffened cylin-
ders subject to axial compression using a classical buckling analysis and the smeared
technique, showed that use of both stringers and rings resulted in more efficient designs
than stringers alone and that small amounts of internal pressure resulted in substantially
lighter weight designs. This weight savings was so substantial that he proposed devel-
opment of a fail-safe mechanism for an aircraft’s fuselage which prestresses the rings

to maintain skin hoop tension in the event of sudden cabin depressurization.

In the late 1960’s designs based on parametric studies, such as Burns’s, began
to give way to designs based on systematic synthesis. Credit for the first publication
of this type is generally given to Kicher®. Schmit, Morrow, and Kicher® extended
Kicher’s early work, using the interior penalty function SUMT to design stiffened
cylinders subjected to axial compression and lateral pressure. They used seven de-
sign variables (such as skin thickness, stiffener segment thicknesses, an stiffener seg-
ment lengths) and considered eleven separate failure modes (including local, panel,
and general buckling) using classical buckling analyses and the smeared technique for
the panel and general buckling analyses and classical flat plate buckling analyses for
the individual stiffener segments, assuming they were simply supported at their edges.
They concluded that minimum weight designs possessed internal rings and internal
stringers, that use of the interior penalty function was effective, that consideration of
multiple load conditions was important, that minimum gage design constraints (usually
based on manufacturing considerations) resulted in substantial weight penalties, and
that relative minima existed in the design space.

Simitses and Ungbhakom®® and Simitses and Aswani®! developed optimum de-
signs using an approach that was different than the approach of Schmit, Morrow, and
Kicher. They performed the design algorithm in two steps, minimizing the total weight
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of stiffened cylinders subject to a single general instability equality constraint in the
first step, generating sets of design curves, then using these curves in the second step
to determine a final design satisfying all other constraints. Results of these studies
showed that the extensional stiffness of the rings tended to be more important than
bending stiffness as a design parameter while the bending stiffness of the stringers
tended to be more important than the slringer extensional stiffness, leading to an op-
timum design consisting of rings of rectangular cross section and stringers of T shaped
cross section. The designs were not unique, in general, and alternative optima existed.
Simitses and Giri®2/%3 employed this two-step design method in designing stiffened
cylinders subject to combined loads with torsion included for the first time. They were
careful to impose an upper bound on the ring spacing in order to justify smearing the
rmgs m the general buckliné calculations. In some cases, this constraint resulted in

a substantial weight penalty. Other results included the observation that the addition
of torsion resulted in heavier ring designs and tighter ring spacings with no substan-
tial effect on stringer designs, that relative ahd ;lt;:rr;aﬁve minimé exisfed in the de-
sign space, and that stiffening in both directions resulted in the most efficient structure.
Simitses and Sheinman®* studied the imperfection sensitivity of optimum designs of
perfect cylinders. They concluded that accounting for initial imperfections was essen-
tial to the development of reliable optimum designs.

A greater proportion of work in shell design is being devoted to development
of methodologies that are more fully automated than those used by Simitses and his
colleagues. Bronwicki, et. al.%* applied an extended interior SUMT and a first order
method using finite difference gradients for performing the unéonstrained minimization,
to the problem of developing designs of ring-stiffened cylinders subject to hydrostatic
pressure. They chose maximization of the separation of the two lowest vibration fre-
quencies as the objective function and used the smeared technique in their analysis.
They also imposed buckling constraints based on their nonlinear vibration analysis by
requiring a positive lower bound on the fundamental frequency. In many cases the op-
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timization failed to converge. Pappas®®®” observed that Bronwicki's gradient-based
optimization algorithm failed to address the possible occurrence of mode switching.

Mode switching can occur when a move made to a new point in the design space,
while increasing the separation of the frequencies corresponding to the first two modes
of the original design, may in fact result in a decrease in the separation of the frequen-
cies corresponding to the first and third modes. If the second mode frequency of one
design iteration corresponds to the third mode frequency of the previous iteration,
mode switching has occurred. A similar problem can arise when attempting to max-
imize the lowest frequency. Pappas proposed two possible solutions to this problem:
either continue using the first order optimization algorithm with added constraints to
enforce separation of the higher vibration modes, or proceed as before using an op-
timization algorithm that does not rely on derivative information to determine search
directions in the design space. Pappas actually combined these two proposed solutions,
relying on direct search until the algorithm failed to find better designs, then using the
method of feasible directions, a first order method, to perform a local search in the
neighborhood of the best design found by direct search accounting for all critical and
near critical vibraﬁon modes in the constraint set. Pappas showed that his technique
could find optimum designs in the cases where Bronwicki’s algorithm failed.

Kunoo and Yang®® based their study of stiffened cylinder optimization on a more
robust analysis in which they modeled some of the stiffeners as discrete beam ele-
ments. Such an analysis, they pointed out, tended to generate large order algebraic
eigenvalue problems which remained prohibitively expensive to solve within a design
optimization algorithm even after application of an efficient solution scheme; hence,
they chose to use the simple one-term solutions from classical buckling theory and
the smeared technique during the progress of the design optimization, then employ
a more refined analysis to check the optimum design. Pappas and Moradi®® pointed
out that Kunoo and Yang “oddly” neglected to mention any problems associated with
closely spaced eigenvalues. Studying the design of ring-stiffened cylinders subject to
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external pressure loads, they showed that the process tended to generate a large num-
ber of nearly simultaneous buckling modes. The significance of this observation was
that it became necessary to examine a large number of buckling modes and establish
constraints for all the ones that were critical and near critical to avoid violating one
constraint while moving to simultaneously lighten the structure and avoid violating an-
other constraint. In a more recent study of optimumn designs of stiffened cylinders un-
der axial compression, Qiu™ used a procedure similar to that of Schmit, Morrow, and
Kicher®®, but simulated a postbuckled cylinder skin in the general and panel buckling
load calculations by using a reduced modulus of elasticity for the skin. Qiu concluded
that allowance for a postbuckled skin had a dramatic affect on the optimum designs.

2.3.2 Unstiffened Anisotropic Cylindrical Shells

The freedom to choose a lamination scheme makes the design of unstiffened lam-
inated cylinders much more interesting than the design of unstiffened isotropic cylin-
ders. While studying the classical buckling response of three layer laminated cylin-
drical shells (ignoring any bending-twisting or extension-twisting coupling exhibited
by the laminate) subject to axial compression and internal pressure, Tasi’* performed
efficiency studies which showed that the most efficient laminates were unsymmetric,
with the layers possessing the highest axial stiffness located nearest the outside surface
of the shell. This is similar to the efficiency of stiffened ‘metal cylinders with exter-
nal stringers. Simitses, et. al.3” drew similar conclusions. The late 1970’s through the

pmseﬁi day have seen a tremendous increase in the applicationw of formal optimization
techniques to the design of unstiffened laminated cylindrical shells. Hirano™ based his
designs on classical buckling of simply supported cylinders under axial compression
using ta type laminates (see section 2.2.2) ignoring, as Tasi did, the presence of any
bending-twisting or extension-twisting coupling. Hirano posed the design problem as
an unconstrained maximization of the buckling load and used Powell’s method (a zero-

order method) to perform the optimization. The existence of many relative minima in
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the design space required restarts from several initial points to locate the global opti-
mum. The complexity of the problem made it impossible to determine what was truly
the best design.

Nshanian and Pappas™ conducted a very thorough study of the optimum design
of symmetrically laminated cylindrical shells subjected to axial compression and lateral
pressure. Their goal was to find a through-the-thickness piecewise constant or piece-
wise linear distribution of lamina orientation angles that would maximize the classi-
cal buckling load and lowest frequency of natural vibration, using the feasible direc-
tions optimization algorithm. The results of the study, obtained with a large number
of computer runs, indicated that mode coalescence occurred for both the buckling and
the vibration problem. For the buckling case, optimum designs possessed as many as
twenty different modes with associated critical loads within three percent of each other.
In some cases, when the authors considered too few buckling modes, the optimization
failed to converge. This again demonstrated the need for consideration of higher buck-
ling modes in the design algorithm. The main conclusions of the study were that the
increase in buckling loads associated with the use of optimization was substantial and
that the piecewise linear distribution of orientation angles through-the-thickness pro-
duced designs with higher buckling loads overall than those designs produced using
the piecewise constant distribution. Onoda™ extended the work of Nshanian and Pap-
pas, providing complete freedom in the selection of the ply angle distribution through
the thickness. Using direct search, with lamination parameters as design variables in-
stead of lamina fiber orientation angles, Onoda concluded that shear-extension coupling
should be negligible for the optimal laminate configurations and that a large number
of alternative optima exist corrésponding to both symmetric and asymmetric laminates.
One of these optima consisted of an infinite number of infinitely thin layers arranged
so that the shell was quasi-isotropic in its surface and quasi-homogeneous through its
thickness. Sun’® applied a different approach to solve the same problem as Onoda
and showed this new approach to be superior to the direct search technique employed
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by Onoda. Using a technique similar to that employed by Pappas®®:%7 and described

in section 2.3.1, he first performed a random search of the entire design space to get

a good initial point for a systematic search for the optimum design. He then applied
Powell’s method to converge on the optimum. Using several different initial points for
the systematic search, Sun found his method generated global optima that were practi-
cally reproducible. Most recently, Hu and Wang’® demonstrated the feasibility of using
a commercial finite element code and the sequential linear programming technique to
determine optimum lamina fiber orientation angles and hole geometries in shells with
cutouts which maximize the buckling load of the shell from a linear prebuckled state.

2.3.3 Stiffened Anisotropic Cylindrical Shells

Most of the work in the area of design of stiffened laminated composite structure
has been devoted to the study of stiffened flat and cylindrical panels. As mentioned in
Chapter 1, PANDA® and PANDA2* represent the state-of-the-art in such design prob-
lems. Much of the information gleaned from the study of the optimum design of stiff-
ened metal cylinders is applicable to cylinders made of laminated composites as well;
however, the additional number of design variables and constraints possible in a stiff-
ened laminated cylinder could result in a problem that would approach the capacity
of even some of todays most powerful computers. This is not to say that examples of
such designs studies are absent from the literature. As early as 1969, Chao™" devel-
oped a code to produce minimum weight designs of orthogonally stiffened laminated
composite cylinders using an analysis and a SUMT optimization algorithm very sim-
ilar to that of Schmit, Morrow, and Kicher®® . The code is quite general, admitting
combined axial compression, pressure, and torsional loads and including many dif-
ferent failure modes; however, the author fails to address such issues as the effects of
anisotropy, mode coalescence and closely spaced buckling eigenvalues in the optimum
designs. Example cases presented in the document served more to demonstrate the ca-

pabilities of the code than to report design trends; however, Chao did elaborate on his
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discovery of alternative optima in the design space. He showed that when alternative
optima existed the ply angles resulting in minimum weight generally did not result in a
maximum buckling load. He reasoned that since the total weight was not a function of
the layer orientation angles, derivatives of the buckling constraints with respect to these
angles should be weighted in order to drive the design to the alternative optima having
the higher buckling loads. Chao implemented this in his code with some success.

Agarwal™ studied the design of cylinders loaded in axial compression only. In
addition to unstiffened laminated cylinders, Agarwal considered cylinders with hat-
shaped longitudinal stiffeners and cylinders made of honeycomb sandwich construction.
He considered all local stiffener buckling, panel buckling, general buckling and buck-
ling of the shell skin bounded by the longitudinal and circumferential stiffeners, based
on classical analyses, as constraints on the design along with a maximum strain con-
straint; however, his analysis ignored all but the orthotropic terms in the laminate con-
stitutive relations. He employed a commercially available code based on a zero order
method to perform the optimization. Aware of the limitations of his analysis, Agarwal
checked his optimum designs using BOSOR4*¢. For the ring and stringer configura-
tions he found that the branched shell code calculated buckling loads thirty percent
lower than his code’s due to considerable distortion of the stringers in the prebuckled
state (ring distortion was small). Modifying his code by reducing the torsional stiffness
of the stringers solved the problem. In addition to this observation, Agarwal concluded
that use of graphite-epoxy composite resulted in designs which were up to fifty percent
lighter than comparable aluminum designs, that minimum gage constraints resulted in
a substantial weight penalty, and that the honeycomb sandwich cylinder with graphite-
epoxy face sheets was the lightest design.

Hansen and Tennyson’® presented the results of a series of parametric design stud-
ies in which both the axial compression buckling load and imperfection sensitivity of
laminated unstiffened and stiffened cylinders were evaluated both theoretically, using

analyses similar to those presented by Tennyson, et. al.* and Booton®®, and experi-
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mentally. Good correlation between theory and experiment was found in most cases.
Their major conclusions were that it was possible to increase the critical buckling load
of laminated composite cylinders very significantly through a judicious choice of lam-
inate configuration and, in regards to the results of Card®* and Tennyson noting the
increased imperfection sensitivity of optimum configurations, that it was indeed pos-
sible to create designs with increased buckling capability without paying too severe a
penalty in increased imperfection sensitivity.

2.3.4 Shell Design Based On A Geometrically Nonlinear Analysis

All of the work in the field of optimum design of cylindrical shells subject to
buckling constraints cited up to this point has been based on “classical” buckling anal-
yses which are based on the assumption of a membrane prebuckled state of stress. For
short cylinders, cylinders with shell wall laminates exhibiting bending-stretching cou-
pling, cylinders loaded with normal pressure, or cylinders exhibiting any combination
of these traits, this is a highly questionable practice. The degrading effects of initial
geometric imperfections makes the assumption of a membrane prebuckled equilibrium
state even more suspect. With access to greater computational power today, more re-
searchers in the area of optimum shell design are basing their methods on analyses
which include some degree of geometric nonlinearity in the prebuckled state. Narus-
berg, et. al.8% used a geometrically nonlinear analysis to determine limit point loads in
developing optimum designs of symmetrically laminated imperfect cylindrical shells
subjected to external hydrostatic pressure loads. Specifying the fiber orientation angles
of the various lamina from which the shell was to be constructed, they determined the
distribution of lamina thicknesses that resulted in a minimum weight shell using the
random search procedure. They also performed the optimization using a classical buck-
ling analysis and compared the results to corresponding optimum designs developed
using the nonlinear analysis. The results of this comparison were that the difference in
optimum weight of the cylinders based on buckling loads calculated based on an as-
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sumed membrane prebuckled state versus those based on limit point loads calculated
using a geometrically nonlinear analysis was small (3%); however, the resulting opti-
mum designs were very different. The designs based on the nonlinear analysis tended
to exhibit more stable postbuckled paths in the postbuckled state. The work of Narus-
berg, et. al. was published in the Soviet literature. A good survey of East European
literature devoted to optimal design of structures under stability constraints appears in
Ref. 81.

Sun and Hansen®? based their design studies on the theoretical buckling analysis
published by Booton?3. They performed an unconstrained maximization of the buck-
ling load on cylinders of fixed weight having lamina fiber orientation angles as design
variables. While the analysis could account for axisymmetric imperfections in the form
of the classical axisymmetric buckling mode, Sun and Hansen did not include imper-
fections in the design process since a priori knowledge of a root-mean-squared imper-
fection amplitude was not available. However, they did calculate postbuckling coef-
ficients in order to assess the imperfection sensitivity of the optimum designs. They
employed the two step algorithm described by Sun’® in the optimization, using hun-
dreds of runs in the random search, and found that the optimum laminate designs were
both unbalanced and unsymmetric. It appeared that such designs tended to exhibit the
highest flexural rigidity along the axis of principle compression; however, the designs
were suspect since they were based on the theoretical buckling analysis of a perfect
cylinder. This suspicion led to a series of experiments on cylinders with measured im-
perfections that seemed to confirm the higher buckling loads of the optimized cylinders
over baseline designs. With the measured imperfections included in the analysis, exper-
imental/theoretical correlation was good, with the experimentally determined buckling
loads being within 5 to 15% of the theoretical values depending on the imposed load-
ing. Based on the postbuckling coefficient calculations, Sun and Hansen found that the
optimization tended to result in significant changes in the imperfection sensitivity of
the final designs with respect to the initial designs.
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Very recently Ringertz®® performed the structural optimization of isotropic stiff-
ened shells based on a geometrically nonlinear finite element analysis using a SUMT.
He presented two novel approaches to the problem. First, buckling constraints that do
not rely on the solution of a nonlinear eigenvalue problem are imposed to insure that
the Hessian of the strain energy remains positive definite. Second, instead of solving
the nonlinear equilibrium equations directly, the displacements and rotations which
describe the deformation are added to the set of design variables and the equilibrium
equations are added as a set of equality constraints. Ringertz presents three example
problems demonstrating the code’s usefulness.



2.4 Summary

Based on a review of past work performed in the area of stiffened and unstiffened

cylindrical shell analysis and design, the following observations can be made

1. DMYV theory yields reliable estimates of the axisymmetric prebuckled
response and buckling loads provided the degree of orthotropy of the
layers of the shell laminate is not too severe and the shell is not
too long (L/R less than 5) so that a large number (at least 5) of
circumferential waves comprise the buckled mode shape. It will be
assumed throughout this study that these conditions are satisfied
to a reasonable degree. Any results generated that exhibit a
substantial deviation from these conditions will be reported with
the appropriate caveat.

2. A geometrically nonlinear analysis of the prebuckled shell, including the
effects of initial geometric imperfections, is warranted.

3. Accurate mathematical models that account for cross sectional distortion
of the stiffeners in the prebuckled equilibrium state should be employed,
particularly when optimum design configurations are being sought.

4. Pillowing of the shell skin under pressure results in highly localized
regions of high strains near the stiffeners. In-plane compressive loads
may exacerbate this effect. Quantification of the stresses and strains
in these regions is particularly important in the case of shells made of
fiber composite materials due to the brittle nature and low transverse
strength exhibited by these materials.

5. The optimal design problem is complicated by the presence of many relative and
alternative optima in the design space as well as the occurrence of mode
coalescence and mode switching during the design process.
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Chapter 3
PROBLEM STATEMENT, ASSUMPTIONS AND GOVERNING EQUATIONS

3.1 Problem Statement

For the ring-stiffened cylinder of Fig. 1.1.1, the problem to be addressed in this
study can be stated as follows:
Minimize: Total structural weight
Such that:
1. The buckling load of the structure is larger than the applied load.
2. Stresses remain below material allowable strengths.
3. Design variables remain within imposed limits.
The behavioral constraints (items 1 and 2) are evaluated using a structural analysis
based on the following analytical model.

3.2 Analytical Model and Assumptions

The stiffened cylindrical shell of Fig. 1.1.1 is assumed to be clamped at both ends
and loaded by an axisymmetric combination of axial compression, torsion, and pres-
sure. In order to simplify the analysis, the behavioral constraints indicated in section
3.1 are evaluated based on analytical models developed under the assumption that all
response quantities in the prebuckled equilibrium state are axisymmetric. This greatly
simplifies the governing equations and makes the problem more tractable. The cylinder
and ring attachment flanges are modeled as thin cylindrical shell segments constructed
of layers of material laminated as shown in Fig. 3.2.1. Note that for purposes of calcu-
lating theoretical buckling loads of the ring-stiffened cylinder, the ring flange, adhesive
bond and attached skin are treated as a single cylindrical shell segment. The ring webs
are modeled as thin laminated annular plates, with free inboard edges, made of layers
of material monoclinic with respect to the plane of the plate defined in a cylindrical
coordinate system as shown in Fig. 3.2.2. Rings in the form of steps in thickness and
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inverted T-shaped sections are considered. The cylindrical shell and annular plate seg-
ments are joined mathematically using conditions of compatibility of deformation and
equilibrium at each junction where segments are connected. A typical cross-section of

the ring-stiffened shell appears in Fig. 3.2.3.

Except at the point where the shell skin meets the edge of a ring flange, The ma-
thcmétical model used in the calculation of the theoretical buckling load (referred to
as the “global” model) can also be used to provide reasonable estimates of the stresses
and strains in the various structural segments. Modeling the segment formed by the
frame attachment flange and attached skin as a single shell segment, and forcing a
jump discontinuity in shell material properties at the point where the skin and flange
meet does not provide the free edge boundary condition which exists at the end of
the ring attachment flange. While it will be assumed here that in-plane (tangential)
stresses in the skin in this region can be adequately estimated using the global model,
the through-the-thickness normal and transverse shearing stresses occurring there can
only be reasonably estimated using a more refined local model. These normal and
shear stresses are known to lead to strength failure in the flange/skin interface area.
The approach taken here is to apply the stress resultants and stress couples in the skin
and ring web from the global model, evaluated where they intersect the ring flange, to
a more detailed model that approximates the ring flange / adhesive / attached skin com-
bination as two concentric cylindrical shells connected by a set of equivalent normal
and shear springs. This results in having to solve a system of differential equations to
determine the response of the flange / skin segment that is more complex than the sin-
gle differential equation governing the response of the flange/skin shell segment in the
global model.

The governing equations are based on the kinematic assumptions of DMV theory
for shells and von K4rm4n theory for plates. Justification for using these theories is
provided in Chapter 2. It is tacitly assumed here that the conditions necessary for cor-
rect implementation of these theories in both the buckling analyses and the analysis of
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the prebuckled equilibrium state do indeed exist. The main assumptions are:

1. Normals to the undeformed reference surface (skin middle surface) remain straight
and normal to the deformed middle surface and are inextensional.

2. Transverse normal stress is small compared to other normal stress components and
may be neglected in the constitutive equations.

3. The shell (plate) is thin so that the ratio of the shell (plate) thickness to radius is
much smaller than 1 (0 < h/R << 1).

4. Strains are small (of the order € where 0 < € << 1). Displacements are also small
but flexural rotations of shell (plate) elements are moderately large (large enough
to warrant consideration of the out-of-plane projections of in-plane forces in the
out-of-plane equilibrium of the element but still small enough to justify neglect
of changes in geometry in the definition of stress components and in the limits of
integration needed for work and energy considerations).

5. The shell exhibits quasi shallow behavior, a basic assumption of DMV theory.

6. Material behavior is linearly elastic.

One significant ramification of these assumptions is that the integrated constitutive
equations for the cylindrical shell are of the same form as those for a flat plate.

38



3.3 Governing Equations

In order to present a single set of governing equations that can be specialized to
either a cylindrical shell or an annular plate, equations governing the geometrically
nonlinear response of the conical shell segment shown in Fig. 3.3.1 are considered.

In Fig. 3.3.1, £, &2 and &; are the meridional (or axial in the case of a cylinder, radial
in the case of an annular plate), circumferential and normal coordinates respectively,

R is the radius to the origin of the coordinate system, ¢ is the cone angle (0° for the
cylindrical shell, 90° for the annular plate), u;, uz and u3 are displacements in the £,
¢, and £; coordinate directions respectively and (l'c‘l, Fg, k3) are the unit basis vectors
of an inertial coordinate system (z3, z2, 23). Note that §2/R is the circumferential angle
in shell of revolution coordinates. The origin of coordinates of the cylindrical shell

is located at the middle surface of the shell. The origin of coordinates of the annular
plate is located at the point where the extension of the midplane of the annular plate
intersects the middle surface of the cylinder to which it is attached. The initial end of
the segment is located at ¢, = & and the final end is located at & = £;*'. An outline
of the major steps involved in the derivation of the governing equations is provided
below.

3.3.1 Strain-Displacement Equations

The development of the strain-displacement equations begins with the nonlinear

strain tensor, E’, written in vector notation as

E= (5) [Vu + (Vu) + (Vu) . (Vu)] (3.3.1.1)
where Vi is the gradient of # - the vector of displacements - and E indicates that E is
a second order tensor. Next, a set of local normalized orthogonal basis vectors, 31, 32,

and 33 can be derived so that the displacement vector, i, at any point ({1, £2, £3) (see
Fig. 3.3.1) can be written as

@ = uy 51(&1, €2, 63) + u2 53(61, €2, &8) + u3 83(61, €2, 63)- (3.3.1.2)
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where the components of 33, 3, and 33 are written in terms of the basis vectors, (l?, ,
I'c'z, k3), of the inertial coordinate system, (z1, 22, 23)-

With & written as it is in Eq. (3.3.1.2), the principles of vector analysis can be
used to derive the following expression for Vi.

6u1/8{1 (R/To) 8u1/652 + uz sin ¢/r° 6u1/6£3
Vi = | 8u2/06 (R/ro)Buz/d; — (u1sing — uzcos ¢)/ro Ouz/0s | (3.3.1.3)
8u3/651 (R/ro) 6u3/a£3 — U3 CO8 ¢/r° 3u3/6£3

where
ro=R—§¢1sing+§€3co8¢ (3.3.1.4)

Substituting Egs. (3.3.1.3) and (3.3.1.4) into Eq. (3.3.1.1), using the assumptions

listed in section 3.2, and performing the indicated mathematical operations yields the
desired set of strain-displacement equations below
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26,3 = 2623 = €33 = 0 (3.3.1.8)

where
r= R —_ fl 3in ¢’ (3.3.1.9)

the ¢;; are strains with respect to the £;¢; coordinate directions, the «;; are curvatures
with respect to the §;¢; coordinate directions and the superscript ° indicates quantities
evaluated at the reference surface of the shell.

3.3.2 Stress-Strain Equations

As was mentioned in section 3.2, a ramification of DMV shallow shell theory is
that the integrated stress-strain equations for the shell have the same form as those for
a flat laminated plate. A derivation of these equations, based on classical laminated
plate theory (CLPT), is straightforward and can be found in the text by Jones®¢. The
required equations have the familiar form

{N}1_ 1[4 [B]][{}
{8a)=1oF BI{E} (3321
where {¢°} is the 3-by-1 vector of middle surface strains, {«} is the 3-by-1 vector of
curvatures, and, given the 3-by-1 vector of stresses, {¢},

h/2

(N} = /_ e (3.3.2.2)

is the 3-by-1 vector of stress resultants,

/2
{M} = /_ oo {0} & dés (3.3.2.3)
is the 3-by-1 vector of stress couples,
Nl.,cr €;+1
{4},BLID)} = 3 /{ C {68 (3:3.2.4)
i=1 3
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are the 3-by-3 membrane, membrane-bending coupling and bending stiffness matrices
respectively, Niayer is the total number of laminae in the laminate, h is the total lam-
inate thickness, ¢5 and ¢3! are the normal coordinates bounding the i lamina, and
(Q) is the 3-by-3 transformed reduced stiffness matrix. Within each individual lamina,
stresses and strains in the load-oriented or global coordinate system are related by

{0} = [Q]{e}- (3.3.2.5)

It is sometimes useful to express Eq. (3.3.2.1) in its semi-inverted form

{e}) V[ 4 [B1][{N)
{{M}} = [[_Bn]T [D'] { {K} } (3.3.26)
where |

[4%] = [A]™ (3.3.2.7)
[B*] = [4]7'[B] (3.3.2.8)
[D*] = [D] - [B]T[A]~*[B]. (3.3.2.9)

3.3.3 Equilibrium Equations and Boundary Conditions

Equilibrium equations can be derived using the principle of virtual work. For a
body of total volume V/, this principle can be stated as

/ Oij 56.‘,‘ dV +46P=0 (3.3.3.1)
| 4

where o;; is the stress tensor, b¢;; is the first variation of the strain tensor and 6P is
the virtual work of external forces. Substituting Egs. (3.3.1.5) through (3.3.1.9) into
Eq. (3.3.3.1), using the stress resultants and stress couples defined in Egs. (3.3.2.2)
and (3.3.2.3), performing an integration by parts, and recognizing the arbitrary nature
of the first variation of the displacement vector results in the following set of equilib-

rium equations

aNu + R 6N12 _ (Nll _N22) sm¢ -

—aT - 3¢, - 0 (3.3.3.2)
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ang R aNgg 2N12 squ
— 4 = - =0 3.3.3.3
8{1 + r 662 r ( )

[—sing dui 0% uj —cosd (R 2 8%y
Nn. - afl+ 8£f]+N22 l—r +(r) —36;‘: +

2R 6%uS ] 8Ny 8uf RONy; 0ul R ANy dug

Mz | 5696) T 96 96 T 06 06 T 06 06
(}z)2 asz au; 32M11 2R 62M12 2sin¢ aMu

- + 2 +— - +

r 08 06 43 r 360& r 04
sing My,  (R\® ®M,; 2Rsing OMiz _

T (;) T T ae. =P (3.3.3.4)

where
r=R-¢§ sing, (3.3.3.5)

the N;; are stress resultants with respect to the §;£; coordinate directions, the M;; are
stress couples with respect to the &;£; coordinate directions and p is an applied normal
pressure.

The associated boundary conditions at ¢, = ¢f and & = ¢! are

u] = specified or Ny [1 - (%) sin ¢] = specified (3.3.3.6)

ul = specified or Ny [1— (f—‘) sin¢] = specified (3.3.3.7)

R
u; = specified or V11 = specified (3.3.3.8)
gus = specified or - My [1 - (-El) sin ¢] = specified (3.3.3.9)
& R
where
_9 M E_x) . ] oM, &) . Ou;
Vi ——afl [1—(R sing| +2 36 + Nu 1—(E sin ¢ 36,

Ouj + (M2 — My,) sin¢g

3e = (3.3.3.10)
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is the Kirchhoff shear stress resultant.
3.3.4 Compatibility Equations

Use of a pure stress or mixed stress/displacement formulation of the problem re-
quires additional equations to insure that the resulting displacement vector is single
valued and continuous. These are referred to as compatibilty equations. A thorough
derivation of these equations for the geometrically linear case with respect to a rectan-
gular cartesian coordinate system can be found in the text by Frederick and Chang®®.
For the more general case of a geometrically nonlinear problem specified in terms of
a curvilinear coordinate system, the derivation of the compatibility equations follows
the same steps as does the derivation found in Frederick and Chang with the following
modifications. The index notation used by the authors, valid only for the rectangular
cartesian coordinate system, must be replaced by vector (or Gibb’s) notation - a more
general notation which is not dependent on the coordinate system being used. Deriva-

tion of the compatibility equations then begins with the expression for the relative dis-

placement vector of two neighboring points, say P and Q,
dii = Vi e dF (3.3.4.1)

where Vi is the gradient of the displacement vector (a second order tensor) and dr” is
the relative position vector connecting points P and Q and e indicates an inner (or dot)
product. It is understoqd that V'iZ is evaluated at point P. It can be shown that Eq.

(3.3.4.1) can be written as o
- di = (E + W) od” (3.34.2)
where E is the nonlinear strain tensor given in Eq. (3.3.1.1) and

W= (-2-) [Vu - (Vu) - (Vu) ) (Vu)] (3.3.4.3)

is the nonlinear rotation tensor. Once the proper form of V is determined based on
the particular coordinate system being used and the techniques of tensor analysis are
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applied, derivation of the compatibility equations follows precisely the same steps out-
lined in detail on pages 100 - 102 of the text by Frederick and Chang. Of the six re-
sulting compatibility equations, upon imposition of the assumptions listed in section
3.2, only one equation remains that is not automatically satisfied. This equation, listed
below, is the final equation needed for a complete description of the problem.

_ (E)z Peh (sm:t) 0€, + (23in¢) de3p
r 6{3 r 6(1 r 6{1

& ey +( ) & (2¢5,) (Rsin¢) 0 (2¢3,)
a¢t 0606 r? 9§

( cos¢) &ug [(5) 8 ug ]2_(sin¢) dug %ug
¢ r) 060& r ) 84 0

( sxnd:) duy FPuy (R2 sin2¢) (6u§)2+

3 06,06 ri o0&

E 32113
r) S 61 T (3.3.4.4)

where
r=R-¢§ sing, (3.3.4.5)

the ¢}; are middle surface strains with respect to the £;¢; coordinate directions and u3
is the middle surface displacement in the £; coordinate direction
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Chapter 4
STRUCTURAL ANALYSIS OF THE AXISYMMETRIC
PREBUCKLED EQUILIBRIUM STATE

4.1 Solution To The Equations Governing The Geometrically Nonlinear
Axisymmetric Response Of Cylindrical Shell Segments

The equations goveming the response of the prebuckled cylinder can be derived
by setting the cone angle, ¢ (see Fig. 3.3.1), to zero and imposing the assumption of
an axisymmetric response (3 ( ) / 8¢; = 0) in Egs. (3.3.3.2), (3.3.3.3), and (3.3.3.4).

The governing equations, in nondimensional form, are -

dN x

- -0 (4.1.1)
dNxy _
X =0 (4.1.2)
PMx  » T
dXQX ~ZNy+Nx dX? +2p=0 (4.1.3)

where the following change of variables has been made in order to match the notation
used by Tennyson, et. al.3%, Booton® and Sun and Hansen®?:

X =¢ (4.1.4)
T =T (4.1.5)
Nx=Nn (4.1.6)
Ny =Na (4.1.7)
Nxy =Nz (4.1.8)
Mx =My (4.1.9)
My =M, (4.1.10)
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Mxy = Maa. (4.1.11)

The N;; are nondimensional stress resultants and the M;; are nondimensional stress
couples with respect to the ¢;¢; coordinate directions, and Z = L?/(Rt,) where L
is the length of the cylinder, R is the radius to the middle surface of the cylinder wall
and ¢, is the total thickness of the cylinder. The nondimensional quantities, indicated
by U, are defined in Table 1. If the wall of the cylindrical shell contains a small ax-
isymmetric imperfection in the form of a stress-free radial displacement, w,, then Eq.
(4.1.3) becomes

—) +Zp=0 (4.1.12)

where T, is the nondimensional form of w, defined in Table 1. The associated bound-
ary conditions at the ends of the cylindrical shell segment (X = {1 and X = 'ﬂ“

from Egs. (3.3.3.6) through (3.3.3.10), in nondimensional form, are

Nx = specified or #;° = specified (4.1.13)
Nxy = specified or @,° = specified (4.1.14)
Vx = specified or w° = specified (4.1.15)
M x = specified or % = specified (4.1.16)
where
Vx = dg(" +Nx (':; + %) (4.1.17)

From section 3.3.2, using Eqgs. (4.1.4) through (4.1.11), the semi-inverted form of the
nondimensional constitutive equations for the laminated cylindrical shell wall are

(€1 ) I El 4, z_;o B By Byl ( Nx )
€22 ﬁz z‘;z ége 22:1 Z;z 26 Ny
{ 712 L= Ay Azg Agg Be Bg; Bes| | Nxv (4.1.18)
M By, -By -By Dy Dy Diy|) Fu [
My By -Bu -By Dy Dy Dy | *u
7 Y -ﬂz —f_gz ‘Egz 2{2 2;2 Dy 0
XY | -Bl¢ -Bss —Bes Dijs Die Dggl * 0 -
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where
‘= -a:—;_;-. (4.1.19)
Eqgs. (4.1.1) and (4.1.2) can be solved immediately yielding constant N x and
Nxy throughout the shell that are equal to the corresponding applied loads. The ax-

isymmetric, nondimensional form of Eq. (3.3.1.7), the strain-displacement equation for

€22, 18
0 =27 (4.1.20)

Equating the right hand side of Eq. (4.1.20) to the right hand side of the expression
for €22 in Eq. (4.1.18) and solving for Ny yields

Ny(X) =b; + b, w(X) + b3 f—;{'vz—(X) (4.1.21)
where — —
by = — (f—i’) Nx - (@) Nxy (4.1.22)
22 A22
V4
: (Azz)
B,
bh=(=2). (4.1.24)
= ()

Since Nx and N xy are constants, Eq. (4.1.12) is a linear ordinary differential equa-
tion in @°(X). The functional form of the initial imperfection @, used in this study is
that of the axisymmetric buckled mode shape of an infinitely long anisotropic cylinder
subject to axial compression derived by Tennyson, Chan, and Muggeridge** and used
by Booton®® and Sun and Hansen®2. The form of this mode shape is

Wo(X) = —pucoswX (4.1.25)
where
w= | —2—. (4.1.26)
Az,
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If R represents the mean radius to the middle surface of the imperfect cylindrical shell
wall, then p is the root-mean-square of deviations from this mean radius. Substituting
Egs. (4.1.18), (4.1.19), and (4.1.21) through (4.1.26) into Eq. (4.1.12) yields

N
a1 d;:. +a; d;; +a3%° = g1 + Nx (pw’ coswX) (4.1.27)
where s
o ==2-+D;, (4.1.28)
A22
ar =255 _ Ny (4.1.29)
A22
2 .
as = Z.— (4.1.30)
A22
= A,Nx AN
n=2 (§+ 12X 4 ’E_.X"). (4.1.31)
A22 A22

Eq. (4.1.27) is a fourth order nonhomogeneous ordinary differential equation with con-
stant coefficients for @°, the normalized radial displacement of the prebuckled cylindri-
cal shell. The particular solution, Wp(X), is

2N
-—0 pw NX g1
wp(X) = coswX + —. 4.1.32

P(X) aywt — aw? + a3 az ( )

The homogeneous solution, w(X), is of the form

‘ —
TH(X) =) Bjeh¥ (4.1.33)

j=1
where the B; are constants of integration to be evaluated using the boundary condi-

tions and the X; are the roots of the associated characteristic equation
01:\4 + azxz +a3;=0. (4134)

These roots are
Xj =2 tid; (4.1.35)
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where

1 /aa a
A= =4[2,/——— 4.1.36
179 a; a;’ ( )

1 ;1.3 as
Ay == 21/— — 4.1.37
2 2 a + a; ( 8 )

and i = v/—1. For the case where N x is negative (compressive), Booton®® has shown
that if NV x is less than the classical axisymmetric buckling (or collapse) load of the
shell (the only case to be considered in this study) then

T (X) = Bye* Xsin(A;: X) + Bze~ ¥ cos(A2 X)
+ B3e*Xcos(A2 X) + Bee~* Xsin(A2 X)

(4.1.38)
The total solution, W°(X), is

T(X) = TY(X) + TH(X). (4.1.39)
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4.2 Solution To Equations Governing The Geometrically Linear
Axisymmetric Response Of Annular Plate Segments

The equations governing the geometrically nonlinear axisymmetric response of the
prebuckled annular plate can be derived by setting the cone angle (¢) to ninety degrees
and imposing the assumption of an axisymmetric response (8 () / 9¢2 = 0) in Egs.
(3.3.3.2) through (3.3.3.10). The normal pressure, p, is assumed to be zero and the
radius, R, is to the origin of the (¢;, &2, £3) coordinate system which is located at the
middle surface of the cylinder to which the annular plate is attached and not at the out-
board edge of the plate. Unfortunately, this does not lead to a set of linear equations
which can be solved exactly as it does in the case of the cylindrical shell. To avoid the
numerical/iterative analysis necessary to predict the geometrically nonlinear response, it
will be assumed that the response can be estimated reasonably accurately using a geo-
metrically linear analysis. Ignoring prebuckling nonlinearitics might be acceptable for
the ring webs since it is likely that the combination of the radial membrane resultant
in the annular plate and flexural rotations, which form the dominant nonlinear terms,
would be small considering that the inboard edge of the annular plate is free and that
the axial compression and torsional loadings in the shell act normal to the outboard
edge of the annular plate. Dropping the nonlinear terms from the axisymmetric form
of Egs. (3.3.3.2) through (3.3.3.4) and nondimensionalizing the result (see Table 1)
yields the desired equations shown below.

dNu L Nu-”zz -
_dfl - (—R) —= 0 (4.2.1)
dNu L ZN 12 _
& (R) 7 0 (422)
&My _ 2(L/R)dMn  (L/R)dMy _
dff r dfl * T dzl =0 (422)

F= [1 - (%) Z,] , (4.2.4)
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L is the length of the cylindrical shell to which the annular plate is attached and N;;
and M,; are nondimensional stress resultants and stress couples, respectively, with re-
spect to the &;¢; coordinate directions. The associated boundary conditions at El =
¢i/L and , €, = €+1/L (see Fig. 3.3.1) from the geometrically linear, axisymmetric,
nondimensional form of Eqgs. (3.3.3.6) through (3.3.3.10) are

N1 = specified or u;° = specified (4.2.5)
N1,F = specified or T;° = specified (4.2.6)
V.17 = specified or u;° = specified (4.2.7)
M,,7 = specified or d:?: = specified (4.2.8)

where % is a nondimensional midplane displacement in the {; coordinate direction, ¥

is defined in Eq. (4.2.4) and

_dMy, L\ My; - My,
Vus= v + (E) — (4.2.9)

is the nondimensional Kirchhoff shear stress resultant. The equation goveming in-plane
strain compatibility, from the geometrically linear, axisymmetric, nondimensional form
of Eq. (3.3.4.4), is
(L/R)de®y; 2(L/R)de®y; d*e2
—_——— ——————— - ———
3 r d¢, d¢,
where the €; are nondimensional midplane strains with respect to the ij coordinate
directions and ¥ is defined in Eq. (4.2.4).

Solutions to the equations governing the axisymmetric response of annular plates

=0. (4.2.10)

made of polar orthotropic material (e.g. a fiber composite laminate with fibers running
radially and circumferentially) have been published by Lekhnitskii®® and Bryant®".
Padovan®® presented solutions to the lihéairﬁét";ﬁéﬁbils;ﬂia\?éming the bending of such
plates subject to generally asymmetric loads; however, it can be shown that the ax-
isymmetric problem admits exact solutions regardless of the stacking sequence of the
plate. This can be shown as follows.
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The semi-inverted form of the laminate constitutive equations for the annular plate

are presented in section 3.3.2. Referring to Table 1, the constitutive equations in nondi-

mensional form are

o y [ A, A, A By By, Bl (N
€11 1 __12 216 _ll 12 _16 an

€2 Az Ap Ay By Ez By | | N2z

q

Y 12 Ayg Ay Ass B B, B Ni;

(T2 _ | A lss a1 e (Y12 (g1
M —Su —El "Egl P_;l Dy, Es _'ill ( )
M2, “ﬂz —Bg Egz 2;2 E’;z ms k22
$ Az | —Bjg —B¢ —Begs Dys Dy ms- 0

where, from the axisymmetric, nondimensional form of Eqgs. (3.3.1.5) and (3.3.1.7)

7y = L8 (4.2.12)
2
d¢,
= ___/7_)-"_3 ==, (4.2.13)
rod
It can be shown by direct substitution that the solution to Eq. (4.2.2) is
Ny = r;A—; (4.2.14)

where A is a constant of integration which depends on the imposed boundary condi-
tions. The annular plates considered in this study are assumed to havc traction-free
inboard edges; hence, at this edge

N2 =0. (4.2.15)

Therefore,
A =0, and thus (4.2.16)
N2 (§) =0. (4.2.17)

Rewriting Eq. (4.2.3), the out-of-plane equilibrium equation, can be written as

& (FMu)  dMy
dr? dr
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_ (E) 40 _40) (4.2.19)

This equation can be integrated once to yield

d(FM M
'—(:d_"-_'u'—) - Hﬂ =7 dig:l + (%) (Mzz - Mu) = Vu? = (4.2.20)

where ¢; is a constant. Since the inboard edge of the annular plate is assumed to be
traction-free, V3,7 = 0 at this edge. Thus ¢; = 0 and

d(FM. —
( dF") - My =0. (4.2.21)
Using Eq. (4.2.19), Eq. (4.2.1) becomes
dNyy (N1 —Ny)
= - = =0. (4.2.22)

Eq. (4.2.22) is satisfied ékact.ly by the stress function x () defined such that

Nu= § (4.2.23)
Ny = i;—’rf. (4.2.24)

Use of the stress function x requires satisfaction of the in-plane strain compatibility
equation - Eq. (4.2.10). Using Eq. (4.2.19) and integrating once with respect to 7,
this equation becomes

-0 -0 —
(11 —€2)-T =

where c; is a constant allowing for a uniform prestraining of the structure. Ignoring

=c (4.2.25)

any such prestraining results in c¢; = 0 and

de®
(1 —€22) ~F ;_'22 =0. _ (4.2.26)

Egs. (4.2.21) and (4.2.26) can be solved using Egs. (4.2.11) through (4.2.13). First,
applying Eq. (4.2.19) to Egs. (4.2.12) and (4.2.13) gives

L\’ da
Ky = - (E) T (4.2.27)
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L\’ Q
Fgp = — ('ﬁ) = (4.2.28)

where

dis°
o== (4.2.29)

Substituting Egs. (4.2.23), (4.2.24) and (4.2.27) through (4.2.29) into Eqgs. (4.2.11)
then substituting Eqgs. (4.2.11) into Eqgs. (4.2.21) and (4.2.26) and collecting terms
results in the governing equations for the midplane flexural rotation 1 and the stress

function x of the annular plate

d?Q  7d2 7 d’x YodX | Ts
71d'2+:dF_39 d_z—-?—dF-}-_zx—o. (4.2.30)
PR 7d? 7 x gl dx 1o
To 3T + - = -_’7—29+ =3 + = =% FEXT 0. (4.2.31)
where
— [(L\?
T = By, (ﬁ) (4.2.32)
=+ =+ (L)\?
= (322 + le - Bll) (}_2) (4.2.33)
— (L\?
Y3 = BIZ (7{') (4.2.34)
=4 (4.2.35)
7 = A4, (4.2.36)
— (L\?
76 = Dy, ('E) (4.2.37)
— (L\?
Y1 = Ugg (E) (4.2.38)
7 = By, (4.2.39)
Yo = (El +B; ‘Ez) ' (4.2.40)
To = By, (4.2.41)



The govemning equations (Egs. (4.2.30) and (4.2.31)) are equidimensional in ¥; hence,
they can be made autonomous by using the change of variables

s=InF. (4.2.42)

This change of variables transforms Egs. (4.2.30) and (4.2.31) into two simultaneous
linear ordinary differential equations with constant coefficients

Ll(ﬂ) + L2(X) =0 (4243)

Ly(R) + Le(x) =0 (4.2.44)

where the L; are the linear, constant-coefficient, second order operators

L= EQ 4 - m) & - 2s0) (4245)
0] ‘{:3(2) +75() (4.2.46)
L = %% — () (4.2.47)
Li=n—5 () + (7% =) % = mo() (4.2.48)

The operators L, and L, are nonzero when material coupling of bending and ex-
tension exists, as is the case when the annular plate is laminated unsymmetrically with
respect to its reference surface (midplane). For symmetric laminates, Eqs.(4.2.43) and
(4.2.44) uncouple since [B"] = 0 so that

d?x
gz ~ VX = 0 (4.2.49)
20

The solutions to these equations are

x(s) =C1e** +Cye™ "’ (4.2.51)
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0(8) = C3 e2?? + C4 e~ 3! (4.252)

where the C; are constants of integration to be evaluated using the imposed boundary
Y Ty Fotl (4.2.53)
Y4 A
ar = [ - \/2—.3’ (4.2.54)
e Dy,

Since the radicands are always positive, a; and a; are always real; hence, Egs. (4. 2.
51) through (4.2.54) represent all the possible solutions to Eqgs. (4.2.49) and (4.2.50).
The special case of a symmetric laminate is typically the most practical; however,

conditions and

exact solutions to the more general problem of an annular plate made of an unsymmet-
ric laminate can also be found. When Egs. (4.2.43) and (4.2.44) remain coupled, they
can be solved by the method of elimination (see Boyce and Diprima®?). When L, and
L, are nonzero operators, application of this method to these equations results in the

single ordinary differential equation for 2
L (L ()] - L2 [Ls ()] = 0 (4.2.55)

Note that if [B*] = 0, L, and L, are both zero and Eq. (4.2.55) becomes 0 = 0, an
identity. Assuming [B*] # 0, expanding Eq. (4.2.55), and collecting terms produces

a‘Q d*Q
NI + P37 + o582 =0 (4.2.56)
where B
o= [(321) + A22D11] (R) (4.257)

— — \2 g — — = L 2
p3=-— [(Bu - Bzz) +2B;By + A Doy + AuDu] (E) (4.2.58)

ps = [(E2)2 +III'D';,] (%)2. (4.2.59)

57



Eq. (4.2.56) is a fourth order homogeneous ordinary differential equation with constant
coefficients for the normalized flexural rotation, 2, of the prebuckled annular plate. As
was the case for the cylindrical shell segment, the form of the solution to Eq. (4.2.56)
is .
‘ -—
Qs) =) _ Cje* (4.2.60)
Jj=1

where the C; are constants of integration to be evaluated using the remaining boundary
conditions (Egs. (4.2.5) and (4.2.8)) and the X; are the roots of the associated charac-

teristic equation

X+ ps X’ + ps = 0. (4.2.61)
the roots of this equation are
Xj = £0 X, (4.2.62)
where i = /=1
1
M=3 2\/-? - % (4.2.63)
Ay = -;- 2 -;-’%+ —z“;. (4.2.64)

x can now be determined using either Eq. (4.2.43) or Eq. (4.2.44). From Eq. (4. 2.
43) - '
Ly(x) = — Ly (). (4.2.65)

This is a second order nonhomogeneous ordinary differential equation with constant
coefficients. The pamcular solution can be found using the method of undetermined
coefﬁcwnts and Eq (4 2.60) - the soluuon for 2. The homogeneous solution pro-

duces two more extranqu cggstants of i mtegratlon, however by considering equation
(4.2.44), it can be shown that unless bendmg—su'etchmg couplmg is absent (another
solution altogether) these constants must be zero. This completes the solution of the

problem. The stress resultants can now be found using Egs. (4.2.23) and Eq. (4.2.24);
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the normal displacement, %3°, can be found by integrating the expression for the ro-
tation, 2, once - the constant of integration representing rigid body normal displace-
ment (if any) of the plate. An expression for the in-plane radial displacement, u,°,
can be found using the solutions for §2 and x, the laminate constitutive relations ( Eqs.
(4.2.11)), and the strain-displacement equation
Zu,°

= (4.2.66)

-0
€22 =—
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4.3 Determination of Constants of Integration

In sections 4.1 and 4.2, the particular and homogeneous solutions to the differen-
tial equations governing the prebuckling response of cylindrical shell and annular plate
segments were presented. It remains to determine the constants of integration asso-
ciated with the homogeneous solutions of the governing equations. Each of the shell
segments, whether they are cylinder or annular plate segments, have four constants of
integration associated with the solution to that segment’s governing differential equa-
tion(s); thus, if there are a total of N shell branches, a total of 4N equations is needed
to determine the required constants of integration. Determination of these constants is
related to the boundary conditions which have yet to be imposed. The first four neces-
sary equations are those associated with the clamped boundary conditions at the ends
of the cylindrical shell

do*
dX

w° =

0 at X=:t%. (4.3.1)

The next 2m equations, where m is the number of ring webs present in the struc-
ture, reflect the assumption that the inboard edges of these webs are traction-free. At

these edges, therefore

N, =M,=0 I=12...,m (4.3.2)

The remaining necessary equations are related to deformation compatibility and
equilibrium at junctions where shell branches are connected. The most general situa-
tion is depicted in Fig. 4.3.1, where an annular plate segment intersects the cylﬁufncal
shellt Deformation compatibﬁity and equilibrium enforcement at the point P indicated
in the figure result in the following six equations:

ult! —ui =0 (4.3.3)
ult! fupet =0 (4.3.4)



i+1
‘:;1,, d‘?::, 0 (4.3.5)

i+1 web
dug duy’®

- = 4.3.6

dfcyl dfi“b ( )
M - M+ Mt =0 (4.3.7)
Vit _Vi-NE =0 (4.3.8)

where i and i + 1 identify the two cylindrical shell segments that meet where the ring
web is connected to the shell and web identifies quantities related to the ring web (an-
nular plate) evaluated at the outboard edge of the web. At first, it appears that the ad-
ditional equilibium equation Nj;! — Nj; + V;2¢® = 0 and the additional deformation
compatibility equations ui*! — ui = 0 and uj*! — u¥*® = 0 are also needed. How-
ever, since the inboard edges of the ring webs are assumed to be traction-free, the as-
sumption of an axisymmetric prebuckling response and equilibrium of the ring web in
the ¢; coordinate direction dictates that V;%*®* = 0. Hence, the attachment of the ring
webs to the cylinder wall does not affect the constant Ny, in the cylinder wall - it re-
mains equal to the applied axial load in each cylindrical shell segment. The additional
deformation compatibility equations, ui*! — ui = 0 and uj*! — u¥* = 0, would be
needed only if the distribution of u; in the cylinder wall was required. However, since
the prebuckling stress state in the ring-stiffened cylinder can be completely determined
without calculating u;, this calculation is not made in the present study.
Using Table 1, Eqs. (4.3.3) through (4.3.8) in nondimensional form become

wt - =0 (4.3.9)
w+Ert =0 (4.3.10)
d_'+
'ii,,, - -——dﬁ, =0 (4.3.11)
1 dcl
(fi;+l d—wcb
- =0 (4.3.12)
{ —web
gy dE
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. . .
M M, +Myy =0 (4.3.13)

i+l i L —web
Vi — ,I-EF;", =0. (4.3.14)

For the case where no ring web is present but the cylinder skin experiences a sudden
thickness change, the following four equations (in nondimensional form) are needed to
enforce deformation compatibility and equilibrium at the point where the two cylindri-

cal shell segments are joined

il g =0 (4.3.15)
duyt!  du
S M (4.3.16)
" dgy
M -, =0 (4.3.17)
Vit _v, =0 (4.3.18)

Should the ring web itself experience a sudden thickness change, the following four
equations (in nondimensional form) are needed to enforce deformation compatibility
and equilibrium at the point where the two annular plate segments, web and web + 1,

are joined
Eipeb-{-l _ T‘-;veb =0 (4319)
web+1 eb
dﬂf‘..,,;. _ di{,s -0 (4.3.20)
del dfl
-ITJ—;nleb+l _ m“ =0 (4.3.21)
U e g, (4.3.22)

As noted earlier, the inboard edges of the ring webs are assumed to be traction-
free; hence, the assumption of an axisymmetric prebuckling response and equilibrium
of the ring web in the £ coordinate direction dictates that V;%** = 0 in each web
segment, making an additional set of equilibrium equations for the Kirchhoff shears
in the various segments unnecessary. The additional deformation compatibility equa-
tion, u***! — y¥¢® = 0 would be needed only if the distributions of u3 in the ring
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webs were required. However, since the prebuckling stress state can be completely de-
termined without calculating u3 in the ring webs, this calculation is not made in the
present study.

Egs. (4.3.1) through (4.3.22) can be used to completely determine all of the con-
stants of integration arising from the exact solutions to the governing differential equa-
tions of each shell branch. Using these exact solutions evaluated at the boundaries and
at points where separate segments are connected in Egs. (4.3.1) tﬁmugh (4.3.22), as
required, results in a system of linear algebraic equations of the form

[KK]{C} = {FF} (4.3.23)

where [K K] contains terms from the homogeneous solutions to the governing equa-
tions of the various shell branches evaluated at boundaries and where the branches are
connected, { FF'} contains terms from the nonhomogeneous solutions to the governing
equations and {C} is the vector containing the constants of integration of the various
shell branches. It was discovered that using homogeneous solutions to Eq. (4.1.27)
written in terms of hyperbolic sines and cosines results in a singular [K K] matrix for
cylinders with length-to-radius (L/R) ratios greater than about 2. The matrix [K K] be-
comes singular because for large arguments the hyperbolic sine and cosine functions
become numerically equal causing a linear dependence among the four terms of the
homogeneous solution to the governing equation. This difficulty can be overcome by
writing the solution in the form of exponentially modulated harmonic funétions, as
shown in Eq. (4.1.38).
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4.4 Stress Analysis at the Ring Flange/Cylinder Wall Interface

The solutions to the governing equations of sections 4.1 through 4.3 can be used
to calculate the stresses at any point in the ring-stiffened cylindrical shell. For the
cylindrical shell segments, calculation of the in-plane axial and circumferential stresses
is straightforward and is outlined in section A.1 of Appendix A. While the interlami-
nar stresses are ignored in the development of the shell analysis, these stresses are not
zero. As shown by, for example, Boitnott®*, the interlaminar stresses may be calcu-
lated by substituting the tangential stresses calculated using shell theory into the three-
dimensional elasticity equations and solving for the interlaminar stresses by integrating
the equations with respect to the thickness coordinate, layer by layer through the en-
tire thickness of the laminate, then imposing stress continuity at each layer interface
and surface traction boundary conditions at one surface of the laminate. Details of this
development can be found in section A.2 of Appendix A.

As mentioned in section 3.2, high through-the-thickness normal and transverse
shear stresses which have been demonstrated to exist in the region adjacent to the
point where the shell skin first meets a frame flange cannot be adequately estimated
using the techniqué outlined in section A.2 of Appendix A. Integration of the three-
dimensional elasticity'eqﬁé{iéns using the in-plane stress resultants from the two di-
mensional theory does not reflect the existence of a free edge in the ring flange. The
result of the neglect of this free edge can be seen immediately in Egs. (A4.1.8) through
(A.1.10) of Appendix A - the expressions for the tangential stresses. Note that each
resulting stress varies linearly throughout the entire thickness of the laminate. At the
point where a ring flange steps down to meet the cylindrical shell skin this linearly
varying stress distribution is not possible since the edge of the frame flange at this
point is traction-free.

Another reason that the stté;s?sﬂé’xixélysis of Appendix A is deficient in the flange/-
skin region is that by merely treating the adhesive layer as a “soft” ply in CLT theory,
it is assumed that the through-the-thickness transverse shear and normal stresses in this
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layer are negligibly small compared to the in-plane stresses (plane stress assumption).
In their widely recognized paper on the analysis of adhesively-bonded single-shear lap
joints, Goland and Reissner®® indicate that the neglect of the in-plane stresses in com-
parison to the through-the-thiclmcés transverse shear and normal stresses is actually
more representative of the load transfer mechanism in an adhesive layer that is much
thinner than the adherends and that has a much lower Young’s modulus than the ad-
herends. Goland and Reissner offered two rational formulations, one applicable to the
analysis of single shear lap joints made of thin metallic adherends, the other applicable
to the analysis of singlc-shear lap joints made of thick wood or plastic adherends. The
former formulation, applicable to most thin-walled aerospace structures, relies on the
following basic assumptions

1. Through-the-thickness normal and transverse shear stresses in the adherends can

be neglected in comparison to in-plane stresses

2. In-plane stresses in the adhesive can be neglected in comparison to the through-

the-thickness normal and transverse shear stresses.

3. The through-the-thickness normal and transverse shear stresses in the adhesive do

not vary through the thickness of the adhesive.
Since Goland and Reissner’s paper was first published in 1944, these basic assumptions

have formed the basis of nearly every study in which a practical working estimate of
the stresses in the joints of secondarily bonded thin-walled structures is required. For
example, the relatively recent work of Wang and Biggers®® on skin/stiffener interface
stresses in bonded, stiffened, flat panels relies heavily on these assumptions. Goland
and Reissner’s assumptions have also been used in the study of tubular lap joints in
isotropic cylinders by Lubkin and Reissner®®, Terekhova and Skoryi®?, and Adams and
Peppiatt®®, and in the study of tubular lap joints in laminated fiber composite cylinders
by Updike and Yuceoglu® and Chon®®. These studies quantified the importance of ac-
counting for curvature of the adherends and nonlinear material behavior of the adhesive
in the theoretical analysis. Hart-Smith®® identified the neglect of nonlinear adhesive
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material behavior as a serious shortcoming of Goland and Reissner’s theory in his thor-
ough study of single-shear lap joints made of both metal and laminated fiber composite
adherends.

It is assumed in the present study that the rings are secondarily bonded along their
flanges to the shell skin using a ductile (see Hart-Smith®®) adhesive. To obtain esti-
mates of the stresses in the adhesive layer, an analysis is proposed incorporating the
Goland and Reissner assumptions and using an approach similar to that of Wang and
Biggers®®. Whereas in sections 4.1-4.3 the flange-adhesive-attached skin combination
was treated as a single shell segment characterized by a single set of constitutive equa-
tions, the segment is now treated as two short cylindrical segments connected along
an outer surface by a ductile adhesive as shown in Fig. 4.4.1. In Fig. 4.4.1, the su-
perscripts w, f, B, and s are used to indicate quantities related to the ring web, ring
flange, adhesive bend and attached skin respectively. N;; and M;; are stress resul-
tants and stress couples related to the £;¢; coordinate directions of the various shell
segments, o33 is the nogaL stress (referred to as ‘peel" stress if this stress is tensile)
in the adhesxve and 713 and 73 are the adhesxve transverse sheat shear stresses The thick-
ness of the adhesive ia);er is h and it is assumed that the adhesxve is applied over the
ennre rmg ﬂangelengsh L ; Note from Flg 44 1 that 51 = fl = 51 and B ==

£2 so that the superscnpts can be dropped from these quantmes DMV theory is again
7used to detexm' 1e the response of the ﬂange segment and attached skm funhennore,

metric form of the governmg equatxons is apphcable The ethbrmm equatxons gov-

ermng the axxsymmetnc response of the nng ﬂange are

dN{, o

+73=0 4.4.1
Z (41
dN/f,
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The equilibrium equations governing the axisymmetric response of the skin attached to

the ring flange are
dN},

- T3 =0 (4.4.4)
s
dNy, —173 =0 (4.4.5)
1 .
‘PM;I _ N22‘ + le'l dug. +Nl.l J‘u;' - — tl d‘rl3 =0 (4.4.6)

@& R, " 4 d& o T ® T2
where Ry is the radius to the middle surface of the ring flange, R, is the radius to the
middle surface of the cylinder skin, ¢; is the total ring flange thickness, and t, is the
total cylinder skin thickness. Egs. (4.4.1) through (4.4.6) can be derived by setting
¢ = 0and 8()/ 8¢ = O (see Fig. 3.3.1) in Eqgs. (3.3.3.2) through (3.3.3.5) and
accounting for the surface tractions o33, 713 and 723 arising due to the presence of
the adhesive layer. Since these stresses are assumed to be constant through the entire
thickness, h, of the adhesive, they act on both the outboard surface of the ring flange
segment and on the inboard surface of the attached skin segment at the same value
of ¢,. Since it is assumed that t; and ¢, are small, the term (ty/2)(dni3/d &) in Eq.
(4.4.3) and the term (¢,/2)(d 713/d £, ) in Eq. (4.4.6) are neglected. The effects of ge-
ometric imperfections are ignored in this theoretical analysis; furthermore, like in the
analysis of Wang and Biggers®, the strain-displacement equations for the adhesive are
based on geometrically linear theory while the strain-displacement equations related
to the ring flange and attached skin are based on geometrically nonlinear theory. The
resulting geometrically nonlinear equilibrium equations that characterize the response
of the ring flange and attached skin, Eqgs. (4.4.1) through (4.4.6), are then linearized
in the following way. Consider Egs. (4.4.1) and (4.4.4). If 15 = 0 then N/, and
N}, would both be constant and equal to the axial load applied to the segment bound-
ary. If 13 # 0 then assume that N/, and N}, can be written as NI 4 NID(&)
and N7 + N (£,) respectively where N/ and N are constant and equal
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to the Ny, applied at the boundaries of the short cylindrical segments and the terms
NI(g,) and N (£,) represent additions to these constant stress resultants resulting
from the my3(&;) that arises due to the presence of the adhesive. While the products of
N/ and N?{*) and the local flexural rotations of the adherends are retained in the
analysis, the products of these rotations and N; JM(¢,) and NM(&,) are assumed to
be small and are neglected. N7{*) is zero and Ny} *(°) is equal to the axial compressive
load applied to the cylinder. Since N/, and N}, are assumed constant, Egs. (4.4.1)
through (4.4.6) now form a system of linear ordinary differential equations with con-
stant coefficients The adhesive is assumed to be isotropic and homogeneous. The linear
strain-displacement equations in the adhesive, consistent with DMV shell theory are

OuB
€33 = a—f':y' (4.4.7)

3u3 oud
—- 448
Vo3 = s + 3¢3 | ( )

Ouf  Ouf
= —3 4 4.4.9
M3 98, —_Faf;; ( )

when: 633 1s s the adhesive normal strain (or ‘pee * strain if the strain is tensile), the 7;;
are adheswe transverse shear strains wnh respect to the ij coordinate du'ecnons and

the u are adheswe dxsplacemems in the E, coordmatc dxrecnons Based on linear

\ 1sotrop1c elasuclty, the stress- stram equanons within the adheswe, neglecung the tan-

genual strcsses are

633 — EB ) 7 - (4.4.10)
723
= — 44.11
Y23 = Gs ( )
It '
= s 4.4.12
713 GB DULITILL L TL I il ( )

where Ep is the Young’s \modulus and Gp is the shear modulus of the adhesive. In
joints with laminated fiber composite adherends, Hart-Smith® recommends replacing
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Epg with an “effective peel modulus” to account for the low transverse Young’s moduli
of the adherends not present in metallic structures. This recommended “effective peel

modulus”, Ep, is given by

1 _1_ 6 (4.4.13)

Ep Ep E
where E; is the transverse Young’s modulus of a single lamina of the adherends.

After imposing the assumption of an axisymmetric response ((8()/9¢z) = 0), Egs.
(4.4.7) through (4.4.12) can be used to solve for the adhesive displacements in terms
of the adhesive stresses. Using boundary conditions at the outboard surface of the ring
flange and the inboard surface of the cylinder skin, the expressions for the adhesive
displacements can be re-written as equations that relate the middle surface displace-
ments in the ring flange to those of the attached cylinder skin, effectively eliminating
the adhesive displacements from the problem. These equations are

uy = —_:;:,33 +u3’ (4.4.14)
uyl = —(’:vm +u;’ (4.4.15)
B
of - Zhms _ | 1k W 1doss _ (=t _ts _p)dus’ | o
Uy GB [2Ep + 2Ep dfl 2 2 dEl +u;. (4416)

In these equations, the u2® are middle surface displacements of the cylinder skin in the
¢! coordinate directions, u;” are middle surface displacements of the ring flange in the
¢! coordinate directions, ¢, is the total cylinder skin thickness and ¢; is the total ring
flange thickness. Solving for the adhesive stresses in Egs. (4.4.14) through (4.4.16)
yields

E °
033 = —h” (ud® —ud) (4.4.17)
G os °
T3 = —hB(“z - “2’) (4.4.18)
GB |, 00 _ o0 ty  h\dugf [t B dug’
T3 = —hB- [(u1 - ulf) + (-2£ + 5) 7‘?1- + (*5' + 5) du;l ] (4.4.19)



Substituting Egs. (4.4.17) through (4.4.19) into Egs. (4.4.1) through (4.4.6) and non-

dimensionalizing the resulting set of equations using Table 1 gives

f
dN
11 +7T13=0
1
v2i
dNy, | _
==+ T3 =
3
&M L* \=r _ _—
_2u - (R : )sz +T33 = —ZP
d¢, fe
d]iu ~T13=0
3
L J
é& -—?23 =0
3
d‘ZH. L? —s = du3t -
- (Rt )N22+N11 ':23 —033 =0
d{l sty dfl
where
—of o duy’ da3’
Fi3 = Uﬁ,(ulf - ul') +RB,T;%L +?Ba—d'?3_
1 1

- -—B
Tz = Cls(ﬁ;f - ﬂ;.)

- —B
033 = Caa(ﬁ;f —u3’)

_r3
11

—=B —L‘Ep
5= Dk

s h
RB: =Uﬁ; (-gz - E) »

(4.4.20)

(4.4.21)

(4.4.22)

(4.4.23)

(4.4.24)

(4.4.25)

(4.4.26)

(4.4.27)
(4.4.28)

(4.4.29)
(4.4.30)
(4.4.31)

(4.4.32)

() indicates that () is a nondimensional quantity, DY, is the axial bending stiffness of
the cylinder skin, L is the total cylinder length, R is the radius to the middle surface
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of the ring flange, R, is the radius to the middle surface of the cylinder wall, and Ny,
is the nondimensional axial compressive load applied to the shell, which is constant.
The nondimensional stress-strain equations for the ring flange and attached cylin-

der skin are (see section 3.3.2 and Table 1)

'En v 'Zu Zu A Bu Bu Em' ‘W €1 ) “
N2, 42 An A Bu B B €2
[Nzl _ 1A Az¢ Ase Ber Bez DBes 4 Tz |
My, B Ba Ba Dy D1z Dis Ru
M2, By, By Bex Diz Dz Das 0
\ M2 ) | Bie B Bes Dis Dzs Des 0

where 0

&
SRS (1‘-) il

t,) d&

o) _ (L \ooutn

€22 = ( R,(f)t.) U3
72,°) = (f’_) i‘i:(-fl

s __ gD

u = =

d§,

Substitution of Eqgs. (4.4.33) into Eqs. (4.4.20) through (4.4.25) results in

—s (L\ &
An (t—) —i-
s dfl

—of
+ 2 (7)

1

f d3u duz®
+K —-+Tf —
nTE U T U,
=0
—1 d*u; + A7 d*u,
xl, (t) o+ (t) dzf
B, T e ey
l
=0
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(4.4.33)

(4.4.34)

(4.4.35)
(4.4.36)

(4.4.37)

(4.4.38)

(4.4.39)



s (L) &%’ f(g)d’v:’ —f(v)ar'-«z;f
B (t.) g +Bhe g, dg, + 5\ R, dz.

2
= (L g o ( L )dﬁ;f_zf ( L ) —
Az (thf) & e \mE) &, T \RA)

2 et - - _
5 L? d*u, 5 d'u, +Cgﬁ;f_ca_°,

+Byyo——= - u
21 th‘ dfi 11 df: 33“3
=-Zp (4.4.40)

— L (ﬂﬂ;. — L ({2-17;’ ——p L2 ) U3‘
An (E) TZ:— + Age (E) ';:6? + 4,, (R,t, &,

A
-8By = -KBI‘T;?— -Ksp = —Cl3ulf+cl3ul
1

- dE, &,
= (4.441)
— L l{z'ﬂ;' — L dzﬂ;' —_ ( L? ) dﬁg‘
—_— 3 Y2 A i n
T () G+ (2) F % (2m) 7
- d°T3° B_, —=B _,,
~Bo—= - Cis%y’ + 0113
d¢,
=0 (4.4.42)
s (L\ & —. (L &Puy’ . L? \ d&u3’
B (F)SF B () S5+ 50 (i) B
t‘ dfl t. d 1 thl d&l
- (L uy' - (L L 2 —o8
4 (R.tf) d€, — Az (R.tz) dg, ~ 4z (R,t,) “s
- L? d2ﬁ§' — d{-ﬁgc = d2-i§a =B _of , =B
T = — + Njy— - C3;3%3 + Cy3w3’
A R,t, d{f 1 df: df: 33Y3 33U3
=0 o B (4.4.43)

Eqs. (4.4.38) through (4.4.43) form a system of coupled, nonhomogeneous ordi-
nary differential equations with constant coefficients. As shown in Appendix B, the
equations governing the response of a flange segment and the attached skin can be
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written as a nonhomogeneous, constant-coefficient system of 16 first order differential

equations of the form
{U'} = [B{U} + {F} (4.4.44)

where the 16-by-1 vector {U} contains flange and skin nondimensional displacements
and their derivatives up to order three (see Eq. (B.17) in Appendix B) and

U} = :ii_;.: v}. (4.4.45)

Assuming the solution to the homogeneous problem is of the form
{U} = {C}en (4.4.46)

the total solution is

{UE)) = [#E)HCY + {UPE)) (4.4.47)

where [®(£,)] is a 16-by-16 fundamental matrix whose columns are made up of the
16 linearly independent solutions to the homogeneous problem (see Boyce and Dipri-
ma89)'

The particular solution, {Up}, can be found using the method of undetermined
coefficients. Since the only nonzero entry in the vector {F} is Fy and it is a constant
(see Eq. (B.19) in Appendix B), then a spatially uniform particular solution is sug-
gested. Let ulfP u3/P ug/P u*P u3*P, and u3*F represent the nonzero, but con-
stant, elements of the particular solution. It can be shown by direct substitution that
s u:,fP \ c 0 )

» (4.4.48)

0
Py
u} 0
0
luwer) P

where _

e33pZ
c3'e3f - c3‘c3!
3€v3 7697

(4.4.49)
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S - (4.4.50)
83; 633 - 334637

P is the nondimensional applied pressure, Z = L?/(R,t,) and 33, e3{ ,e32, and €3]
are defined in Egs. (B.15) and (B.16) of Appendix B.

Determining the form of [®) involves finding the eigenvalues of the coefficient
matrix [B]. When all of these eigenvalues are distinct, determining a set of linearly
independent solutions to the homogeneous form of Eq. (4.4.44) is straightforward;
however, if several eigenvalues are repeated, finding a linearly independent set of so-
lutions becomes much more difficult. It was discovered that [B] possesses repeated
eigenvalues of unknown multiplicity; hence, a numerical method known as the mult-
segment technique, successfully employed by Kalnins®' in the linear static analysis of
shells of revolution, has been chosen to solve the homogeneous problem. In the mult-
segment technique, the domain is artificially divided into additional segments (referred
to as multi-segments in the present study to distinguish them from physical structural
segments) in order to ensure that a loss of accuracy, due to the exponential growth of
the solutions to the homogeneous form of Eq. (4.4.44), does not occur during the nu-
merical integration of the homogeneous form of Eq. (4.4.44) over a domain that is
t00 long. The form of the total solution in cach multi-segment is still the same as Eq.

(4.4.47). However, in this case {C} is a 16-by-1 vector of {U} evaluated at the ini-
ual end of a multusegment, say mulnsegment number ms. For clanty, this vector of

 constants wﬂl be referred to as {ur}™.

In order to determme the {u 1}"“ in t.he various multisegments, boundary condi-
tions must be imposed at the chds of the ﬂanges, at the ends of the attached skin, at

' the junction where the nng web ;s'connected to the ring flange, and at the ends of the

various mult:scgments. Stress resultants and stress couples from the shell analysis de-
scribed in sections 4.1 through 4.3 are used as loads applied to the joint. This is the
hsamc approach as t.hat ongmally used by Goland and Reissner and has been criticized

by Hart-Smith®®. However. since the stresses calculated by Hart-Smith using his more
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consistent analysis are generally lower (and therefore less conservative with respect to
design) than those calculated using the Goland and Reissner approach, the latter ap-
proach will be used in the present study. Conditions at the point where the frame web
intersects the frame flange assuring continuity of displacements and flexural rotations
are also needed. Finally, continuity of all response quantities at segment boundaries re-
mote from the flange edges and the web intersection must be enforced. Mathematically

these conditions can be stated as, at &; = & (see Fig. 4.4.1)

w =My (4.4.51)
Vi =Vu (4.4.52)
N =Nu (4.4.53)
i =T (4.4.54)
M;; =0 (4.4.55)
Vi =0 (4.4.56)
Ni=0 (4.4.57)
~: =o. (4.4.58)

where superscript f; indicates quantities related to the first flange segment evaluated at
& = &, superscript s; indicates quantities related to the first attached skin segment
evaluated at §; = £ and ﬁ'u, ﬁu, ffn. and 'ﬁn are the nondimensional axial stress
couple, Kirchhoff shear stress resultant, axial stress resultant and tangential shear stress
resultant at £&; = ¢! from the analysis of sections 4.1 through 4.3. Note that similar
conditions exist at £, = £i*? (see Fig. 4.4.1). At§; = {1, where the ring web

intersects the ring flange

win _wfi=o0 (4.4.59)
T 4T =0 (4.4.60)
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dﬁ;!‘“ da—;fi

e LI (4.4.61)
. o (4.4.62)
d§, d,
whh gk =0 (4.4.63)
T fiyr _ -ﬁ;f.- =0 (4.4.64)
f-+1 H + Mu =0 (4.4.65)
f.+: v (%) Ny =0 (4.4.66)
o _ W =0 (4.4.67)
N-;-z-o»x _ sz =0 (4.4.68)

where superscript f;4+ indicates quantities related to the ring flange segment ¢ + 1 in
Fig. 4.4.1 evaluated at £, = £}*?, and superscript w indicates quantities related to the
ring web. ﬁ: and ﬁ:: are the stress resultant and stress couple at the outboard edge
of the web which are calculated based on the analysis of section 5.3. Note that sim-
ilar boundary conditions are not required for the attached skin beneath the ring web
since it is assumed that the web is connected to the ring flange only. Finally, at seg-
ment boundaries remote from the frame web and frame flange edges

{up}™ + {up}™" = {ur}™"* + {up}™" (4.4.69)

maigy

where {up}™" represents {U} evaluated at the end of multisegment ms;, {ur}
represents {U} evaluated at the beginning of the next adjacent multisegment ms; 4,
and {up}™" and {up}™"*' represent the (constant) {Up} associated with multiseg-
ments ms; and ms;,, respectively. Assuming the domain is divided into a total of m
multisegments, all of these boundary conditions can be written as a system of linear

algebraic equations of the form
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{u}}
Bl : }=1{f} (4.4.70)

{ur'}
where [b] contains terms associated with the [$] matrix of the various multisegments
evaluated at the ends of these multisegments and {f} contains terms associated with
the applied loads and the particular solutions, {Up}, of the various multisegments.

Hence,

{u1}
{uF
thus completing the solution of the problem. Note that the size of the [b] matrix is
24+16m where m is the total number of multisegments. The adhesive stresses can then
be calculated using Egs. (4.4.17) through (4.4.19).
As stated earlier, some consideration of nonlinear material behavior of the adhe-

= [8]7 {f}. (4.4.71)

sive is necessary in order to develop meaningful estimates of adhesive stresses. As
noted by Hart-Smith®, a typical ductile adhesive used in structural bonding exhibits
significant nonlinear material behavior at stresses above 6000 psi. If this stress is a
033 “peel” stress, failure due to delamination of the composite adherends would oc-
cur in a typical graphite/epoxy fiber composite laminate. This is the most typical fail-
ure mode for single-shear joints with laminated fiber composite adherends observed
by Hart-Smith in the laboratory. Hence, assuming interlaminar normal stresses in the
as-designed joint must remain below this 6000 psi threshold, Hart-Smith recognized
that use of a linear relation between peel stress and peel strain (Eq. (4.4.10)) was ad-
equate. Since the interlaminar shear strengths of most composite laminates tend to be
significantly higher than 6000 psi, Hart-Smith chose to use an elastic-perfectly plastic
adhesive model to relate transverse shear stresses to transverse shear strains.

Use of an elastic-perfectly plastic adhesive model is beyond the scope of this
study. Instead, a simpler, more approximate approach will be taken. A*knockdown”
factor will be applied to the transverse shear stresses of Egs. (4.4.18) and (4.4.19) to
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account for the shear stress relief afforded by nonlinear material behavior in the ad-
hesive . An approach used by Corvelli*®, which yielded good correlation with exper-
imental results, involves reducing the shear stress concentration factor in single-shear
lap joints, calculated using a linear elastic analysis, by the ratio of the adhesive secant
shear modulus to its initial tangent modulus. The stress concentration factor, K, is the
ratio of the peak shear stress occurring at a joint edge to the nominal shear stress cal-
culated by dividing the shear load applied to the joint by the bond area. Corvelli re-
duced K., the stress concentration factor calculated using a linear elastic analysis, to
K, the estimated stress concentration factor accounting for adhesive plasticity using

the relation
Giee

Gean’
where G,.. is the adhesive secant shear modulus and G,y is the initial tangent shear
modulus. In the case under consideration here, the nominal shear stress is very small
since, unlike the case of a single-shear lap joint, the ring flange/cylinder skin joint con-
sidered in the present study transmits a very small net shearing force. Recognizing that
the nominal shear stresses in Eq. (4.4.72) are small, the peak “elastic” and “plastic”
adhesive shear stresses are related by a simple “knockdown” factor. This “knockdown”

Kp=1+(K.—-1) (4.4.72)

factor for the transverse shear stresses of the present study is G,.c/Gtan. Corvelli used
0.29 for this ratio. This value will also be used in the present study.
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Chapter §
BUCKLING ANALYSIS

5.1 Solution Methods

The buckling problem generally involves the solution of a set of linear, homo-
geneous partial differential equations and the satisfaction of a set of homogeneous
boundary conditions. For example, the homogeneous equations derived by Booton®®,
Egs. (2.85) and (2.86) of Ref. 35, are the stability equations for imperfect, anisotropic
cylindrical shells subject to combined loads. For the cylindrical shell and annular plate
structures considered in this study the solutions to the partial differential equations
must be periodic with respect to the circumferential coordinate £2; hence, these partial
differential equations can be reduced to a set of ordinary differential equations using
the Fourier series. If for a specified load (assumed here to be characterized by a single
parameter A as will be described later in section 5.5) F(§;,£2; A) represents a typical
solution to the stability equations, then F' can be written in the form

F(é1,62)) = E[f,(e,, ,\)sm— + falf13 N cos =2 a: (5.1.1)

n=0
where ¢, is the axial coordinate of the cylindrical shell or the radial coordinate of the
annular plate, ¢, is the circumferential coordinate, and R is the radius to the origin of
the (¢1,¢2,£3) coordinate system (the middle surface of the ring-stiffened cylindrical
shell). Since stability equations are linear and homogeneous, then each term of Eq.
(5.1.1) must satisfy these equations individually; hence, for a specified number of cir-
cumferential waves, n; € {ni,nz,...,n}, where t is the total number of different

values of n considered in the analysis, the solution F' can be written for each n;

F(n;;61,62;2) = fi(§1;A) sin n'£2+f2(£1,z\) n’& (5.1.2)

Substitution of Eq. (5.1.2) into stability equations ( such as Egs. (2.85) and (2.86) of
Ref. 35) eliminates the £, dependence of the problem and reduces the buckling prob-
lem to the solution of a set of ordinary differential equations in ¢, ( see Egs. (2.101)
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through (2.104) of Ref. 35). Upon integration of these ordinary differential equations,
a set of boundary conditions must be satisfied to determine the constants of integration.
Since these boundary conditions are homogeneous, Eq. (5.1.2) is the only term from
the original Fourier series (Eq. (5.1.1)) needed for a complete solution of the buck-
ling problem. Satisfaction of the boundary conditions leads to an algebraic eigenvalue
problem of the form

[B(n;M)]{C}=0 (5.1.3)

where [B(n; \)] contains the solutions to the stability equations evaluated at boundary
points, n; is a specified circumferential wave number, A is a parameter related to the
imposed loads and {C} is a vector of constants. If the order of [B] is M-by-M then M
discrete values of A and and corresponding vectors {C} exist that result in a nontrivial
solution of Eq. (5.1.3). For the specified value of n;, the lowest value of A (defined
here as \,) is the critical load associated with that specified value of n; and {C} can
be used along with Eq. (5.1.2) to determine the mode shape associated with A,. The
buckling load (A.,) of the structure is then

Aer = min(A,) n=0,12,..,n (5.1.4)

and the mode shape associated with min(),) is the buckled mode shape of the struc-
ture. If n., is the circumferential wave number associated with A,, then this mode

shape is

F(ncr; €1, 6a; A<:r) = fl(fl; Acr) sin nt;-:z + f2(£1; Acr) cos nc}rz& . (5'1'5)

For both the cylindrical shell and the annular plate, the stress resultants of the pre-
buckled equilibrium configuration vary with the coordinate £;; hence, the equations
governing the stability of this equilibrium configuration have variable coefficients,
making it very difficult to solve these equations in closed form. Hence, a numerical
method must be chosen to solve the buckling problem. Many numerical techniques
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exist that can be used to integrate the ordinary differential equations which character-
ize the buckling problem for a shell of revolution. One of the earliest methods used
was finite differences (see, for example, Budiansky and Radkowski®®). Since the set
of ordinary differential equations, generally of order four or higher, can be written as
a system of first order equations, attempts were made to apply a forward integration
technique such as Runge-Kutta integration or one of the predictor-corrector methods to
solve this first order system. It was thought that such an analysis would be more effi-
cient since it would alleviate the high computer storage requirements associated with
the method of finite differences. Unfortunately, it was discovered that loss of numerical
accuracy attributed to the exponential growth of the solutions to the first order system
of equations limited the distance over which a forward integration could be performed.
Kalnins?” and Cohen?%10! solved the problem by breaking up the domain of integra-
tion into segments and restarting the forward integration procedure at the beginning

of each segment. This numerical method is known as the “Multi-segment Technique”
or “Parallel Shooting”. Booton3® used this method to determine theoretical buckling
loads of imperfect, anisotropic cylindrical shells subject to combined loads. A tech-
nique known as the “field method”, developed by Jordan and Shelley!%?, where the
governing equations are reconfigured in order to eliminate the unbounded growth of
the solutions to these equations, was successfully used by Cohen'?3:1%4 to solve highly
complex branched shell problems without having to discretize the domain of integra-
tion of the governing equations, resulting in increased computational speed and signifi-
cant savings in computer storage.

No matter which method is chosen to integrate the stability equations, the solution
of an algebraic eigenvalue problem like Eq. (5.1.3) for A, generally accounts for the
greatest expenditure of computer processing time, thus driving the efficiency of the
entire algorithm. In general, for a specified value of the circumferential wave number,

n;, An can be found from the following nonlinear equation

det[B(ni; \)] = 0 (5.1.6)
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where det[B(n;; )] is the determinant of the [B(n;; A)] matrix in Eq. (5.1.3). In the
classical buckling analyses of plates and shells, the prebuckling problem is solved us-
ing the techniques of linear structural analysis so that [B(n; A)] is a linear function of
the load, represented by \; hence, Eq. (5.1.3) can be written as

{{B1(n)] + A[B2(n)]HC} = {0} (5.1.7)

yielding a linear algebraic eigenvalue problem for the A and their associated {C}. L,
on the other hand, [B(n; A)] is a nonlinear function of A, as is the case in this study,
solution of Eq. (5.1.3) becomes more complicated. One popular method, known as
determinant plotting, simply evaluates Eq. (5.1.6) for values of A increasing incremen-
tally from some initial value which is known to be less than An until a change in the
sign of the determinant is observed indicating that the determinant has passed through
zero. Booton®® used a generalized Gaussian elimination technique, sometimes referred
to as “Potter’s method™1%%, involving submatrices of [B(n; A)] to reduce the search to
one of finding zeros of the determinant of a much smaller submatrix known to posses
all the zeros of the determinant of the original matrix [B(n; A)]. This eliminated the
numerical overflow or underflow problems associated with calculating the determinants
of large order matrices. While the determinant plotting technique is very straightfor-
ward to implement, it is not suited for implementation into an automated search algo-
rithm for \,. It was observed during the development of the theoretical analysis of this
study that while det[B(n; )] does reach zero when A = ), the determinant does not
change sign when the A > A,. As was confirmed using the STAGS'?® finite element
program, all of the values of A leading to nontrivial solutions of Eq. (5.1.3) have two
different mode shapes associated with them. In other words, all the eigenvalues of Eq.
(5.1.3) are repeated once. This means that as A is incremented past a critical value (a
value resulting in a zero det[B(n; \)]), two critical values of A are actually passed re-
sulting in two simultaneous sign changes of the determinant for a net change of zero.
Without a sign change in the determinant, an automated search for A, is very difficult.
Upon plotting the two mode shapes associated with the repeated eigenvalues, it was
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observed that the only difference between the two was a phase shift in the circumfer-
ential wave pattern, This could be caused by the fact that, in addition to Eq. (5.1.2),
another possible solution to the stability equations is

Flms6o,630) = (€ Voin T2 4 (6 Neos 2. (518)
While it was not confirmed that this is indeed the reason for the repeated eigenvalues,
it would produce two mode shapes that differ only by a phase shift. Booton’s analy-
sis does not suffer from the problem of these repeated eigenvalues because, by taking
advantage of symmetry to reduce the domain of integration across the length of the
shell by half, he eliminated Eq. (5.1.8) as a possible solution. The fact that values
of ) leading to a zero determinant of [B(n; A)] tend to be very closely spaced forced
Booton to use very small increments in A to avoid passing two neighboring eigenval-
ues. Without a good initial estimate of A,, the determinant plotting method in this case
could be computationally expensive.

As an alternative to determinant plotting, another technique proposed for the solu-
tion of Eq. (5.1.6) for critical values of A is Newton’s method. Application of New-
ton’s method is harhpered, however, by the behavior of the function det[B(n; A)].

As described in the paper by Blum and Fulton!®”, as X approaches a critical value,
det[B(n; \)] is not a monotonically decreasing function. Instead, det[B(n; A)] behaves
more like a step function in the vicinity of a critical value of A; hence, unless a very
good initial estimate of the desired critical value is available (“very good” in this case
being an initial value of A within five percent of a critical value or less), it is highly
likely that Newton’s method will converge to an cigenvalue that is greater than Ap if
the method converges at all, rendering the method unreliable. Keller'®® presents ways
of deriving functions which are smoother and more well-behaved than det[B(n; A)]
that have all the same zeros as det[B(n; ))]. These methods were also evaluated dur-
ing the course of this study. While the functions proposed by Keller were more well-
behaved than det[B(n; X)), the close spacing of the critical values of A which is a
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characteristic of shell buckling problems still made it too likely that application of
Newton’s method would result in convergence to an eigenvalue, ), greater than A,.

For the case where [B(n; )\)] is a nonlinear function of A, greater success has been
achieved by applying Newton's method to Eq. (5.1.3) rather than Eq. (5.1.6). If Py
represents an estimate of A, such that A < A, then a better estimate, A1 can be
found by solving the linear eigenvalue problem (see Eg. (3) of Ref. 109)

{[B(m; X)) + AN [B(n; M)]HC} = {0} (5.1.9)
for the correction term A X', which is the smallest eigenvalue of Eq. (5.1.9), where
[B(n; A?)] is the first derivative of [B(n; A*)] with respect to A. An improved estimate
of An (A**1) is found by

A = AF 4 r AN (5.1.10)
where 0 < r < 11to insure that A < A, after each iteration (see Sun''®). Itera-
tions continue until Ai+! is sufficiently close to A to assume convergence has been
achieved.

In order for the technique of solving the nonlinear buckling eigenvalue problem
as a series of linear eigenvalue problems to be efficient, Eq. (5.1.9) must be solved
very rapidly. A number of computer programs are available to do this. The most nu-
merous and efficient programs have been written to solve linear eigenvalue problems
such as Eq. (5.1.9) where both [B(n; \¥)] and [B(n; \*)] are symmetric matrices and
one of them is positive definite so that all of the eigenvalues, AJ, are real numbers.
When neither [B(n; A¥)] nor [B(n; )] is positive definite and/or one of the matrices
is not symmetric, then complez values of A) may exist (see Meirovitch!'') requiring
a more general (and time-consuming) algorithm to solve the eigenvalue problem. It
was observed during the course of this study that such complex values of AX occurred
when the buckling problem was posed using the mixed stress/displacement formula-
tion employed by Booton®® and Sun!!?. These complex values of AA do not have a
clear physical meaning. Posing the buckling problem using a pure displacement for-
mulation yields symmetric matrices for both [B(n; A¥)] and [B(n; A¥)] of Eq. (5.1.9).
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If \' is chosen so that A} < A,, then [B(n; A¥)] being positive definite eliminates the
possibility of complex values of A). During the present study, it was concluded that
the loss of efficiency in solving Eq. (5.1.9) caused by the existence of complex val-
ues of A) eclipsed the gains in efficiency realized by reducing the number of primary
unknowns from three to two using the mixed stress/displacement formulation. Hence,
a pure displacement formulation, for which a well-documented stability theory related
to the second variation of the total potential energy exists, was chosen for the present
study.

Along with the pure displacement formulation of the buckling problem, the nu-
merical technique chosen to solve this problem in the present study is the finite ele-
ment method. The finite element method was chosen since a limited amount of com-
puter storage was not a critical issue and the method can be formulated directly from
variational principlés without the need for an explicit derivation of the stability equa-
tions. What follows in section 5.2 is the derivation of the finite element model of the
second variation of the total potential energy for a cylindrical shell element. The deri-
vation of the finite element model of the second variation of the total potential energy
for the annular plate element appears in section 5.3. Assembly of the elemental finite
element models into the global finite element model for the ring-stiffened cylinder is
outlined in section 5.4, and the application of Trefftz criterion which yields the nonlin-

ear buckling eigenvalue pfoblem is outlined in section 5.5.
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5.2 Finite Element Model of The Second Variation Of The
Total Potential Energy of a Laminated Cylindrical Shell

The total potential energy of a thin, imperfect cylindrical shell element subject to

combined loads is

1
m-; / / {0)T {e — €P} dsdézdts + Mioad (5.2.1)
&1 /6 /&
where
011
{o} =4 02 (5.2.2)
T12
and
€11 — Efl
{e—eP}={ ez2— ¢l (5.2.3)
Y12 — ‘71};

where a;; is a stress with respect to the §;¢; load oriented or global coordinate direc-
tion (not to be confused with the material or local coordinate direction), ¢;; is a to-
tal strain with respect to the £;¢; coordinate direction, IIj,q4 is the potential energy of
the interactive loads between elements and any externally applied loads and ef; is an
initial strain with respect to the ¢;{; coordinate direction arising from the initial geo-
metric imperfection. It is assumed that the unloaded, imperfect cylinder is stress-free;
furthermore, the imperfection is assumed to be in the form of an axisymmetric radial

displacement, w,, where
Wo = wc(El) (5.2.4)

and the nondimensional functional form of w, is given in Eq. (4.1.25). Setting the
cone angle ¢ equal to zero (see Fig. 3.3.1) in Egs. (3.3.1.5) through (3.3.1.9), the
strain-displacement relations from DMV theory are

en = €,(&, &) + L1 (&, 2) (5-2.5)

€22 = €32(€1,82) + Ear22(€1,&2) (5.2.6)
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2 = 152(€1,€2) + E3x12(61, £2)

% aul +l (.a_“i)2
‘1= 3¢, T2\ 8¢

€2 = Gu + + (.a_ui)z
0, /3

o l 2 a“o auo
=56 * 5 T 3% 0
_Pug

a¢?
3214;

[1E;
o Pus

127 T75€,06;

where

K22 = =

(5.2.7)

(5.2.8)
(5.2.9)
(5.2.10)
(5.2.11)
(5.2.12)

(5.2.13)

and all of the terms in Egs. (5.2.5) through (5.2.13) have been defined in section
3.3.1. The initial strains due to the geometric imperfection can be found by setting

u$ = w, and uf = ug = 0 in Egs. (5.2.8) through (5.2.13), yielding

P _ _oP P
en = €1 +851

P
=7+ €3K32

P
€2 = ‘712 + 53"12

where )
€°P — l Sw.
11 2 acl
] Wo
=%
Tz =0
Pw,
k= 6{?
kb =0

(5.2.14)

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.18)
(5.2.19)

(5.2.20)

(5.2.21)



P _
K =0

(5.2.22)

The displacement u§ in Egs. (5.2.8) through (5.2.13) is the radial displacement
of the middle surface of the perfect cylinder. Replacing u$ in these equations with
u$ + w, so that u$ now represents the radial displacement of the middle surface of
the imperfect cylinder, then substituting Egs. (5.2.5) through (5.2.22) into Eq. (5.2.1)

glv
== O'T ? + ’PE 3d 1 H°¢
/&/:/&{} (&) + & (R)) désdtadts + ioad
where
3
{5}—{52}
‘Yfz

o _ Oul (6113)2 dug dw,
@ =% t3\a ) T o o
 _ 0 6“2 u3 l au; 2
nw=w=5, tgt (acz)
Bus au ous O, Bus
~0 l 2 3 3 ° 3
Uil T TR TR AR T T
L w
K1l = Kk = 351
.
22 22 afg
32u3

Rig = m1g = =2 096,06

(5.2.23)

(5.2.24)

(5.2.25)

(5.2.26)
(5.2.27)
(5.2.28)
(5.2.29)
(5.2.30)

(5.2.31)

and the €}; and k;; are shell middle surface mechanical strains and curvatures with

respect to t.he €i€; coordinate directions, which are zero in the unloaded structure. Inte-

grating Eq. (5.2.23) with respect to {3 yields

= % / {NYT (@) + {M)T {R}) dt2dts + Troad
&L JE
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where, as in Egs. (3.3.2.2) and (3.3.2.3)

Nu on
{N}= { Niz } = / { 022 } d{s (5.2.33)
Nz &

T12
and
Mll J11
{M}= { M2, } = / §s { 022 } d¢3 (5.2.34)
M, & Ti2

are stress resultants and stress couples and the superscript T indicates the transpose of
a matrix or vector. Eq. (5.2.32), written in nondimensional form becomes

= 1 — S

=1 [ [ (F @)+ () (7)) s + Tous (5.2.35)
1 £2

where the overlined quantities are nondimensional quantities that are defined in Ta-

ble 1. Also defined in Table 1 are the nondimensional membrane stiffnesses Apm, the

nondimensional membrane-bending coupling stiffnesses Bn.m and the nondimensional

bending stiffnesses Dy used in the nondimensional form of the stress-strain equations
(Eq. (3.3.2.1)) given by

( Eu ) 'En zu zls Eu zu EIG- ’gl ) 'gl )
% 22 %12 %22 %26 %21 % 22 %20 & €22
12 _ 16 26 66 61 62 66 — 5
Mo (= | B B Ba Da Da Dl iz(=lelydey
22 By; Bz Be: Diz D2 Dis| | %5, Rz
| My, ) | Bye Bas Bes Dis D2s Desd | 7y ) =2y
(5.2.36)

The prebuckled equilibrium configuration can be determined by setting the first varia-
tion of the total potential energy equal to zero. This leads to

oM = [ﬁ A {WYT{6€) + {M)}T {6%}} dE,dE, + 6M10ad =0 (5.2.37)

where § is the variational operator. The equilibrium configuration resulting from Eg.
(5.2.37) is stable if the second variation of the total potential energy is positive for all
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kinematically admissible displacement fields. The second variation can be written (in

nondimensional form) as

#T= [ [ (Y () + (Y (3R} + (F)T (7T )+
€& Y&,

{TM—}T {62%}} dEzdfl + 62ﬁlocd

(5:2.38)

where {V'} and {3} are buckling stress resultants and stress couples given by

r 'Jv' )
1 rAn 4 216 By, 212 Eu T
Na A1z 4y A Bu B Bae
(N U _ | A A2 Ass Ber Bez Bes
M, By Ba Ba Du Dz Die
M, Biz Bz Be: Diz Dz Dy
| 3}, | | Bis Bzs Bes Dis Dz Des

( 6%:1 ) ( 6%‘1‘1 )
o0
& O
% = &y
{ %Nz y=[c] { 2A12 ).
6K11 el 611
6Kz 6K22
\ 8.'?12 / \ 6?12 /
(5.2.39)

Taking two variations of the strain-displacement equations (Egs. (5.2.26) through
(5.2.31), substituting the resulting expressions into Eq. (5.2.38), and simplifying 62IT

using Eq. (5.2.37) results in

((Fa)" ( CoNED

el w, ALY

\

My ) -8 /68,
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(5.2.40)

where ()’ indicates that () is a buckling quantity and unprimed quantities are deter-
mined from the prebuckling equilibrium configuration. Any derivatives of a prebuck-
ling quantity with respect to £; have been dropped due to the assumed axisymmetric
response of the prebuckled equilibrium configuration. As mentioned in section 5.1, due
to the periodic geometry of the cylindrical shell, the nondimensional middle surface
buckling displacements ¥;',%;' and ;' and the nondimensional buckling stress resul-
tants and stress couples W‘ll,m,,-]\-’;,,ml,mz and M"u can be written in terms of

a Fourier series in the circumferential coordinate, §;. In other words

(@'Y (ThE))
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) cos BE, (5.2.43)
(5.2.44)

n is a circumferential wave number, L is the length and R is the middle surface radius

of the cylinder. Substituting Eqs. (5.2.41) through (5.2.43) into Eq. (5.2.40) and per-
forming the integration with respect to the nondimensional circumferential coordinate,

£,, results in

T
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where
dU
ekll TI?IL
ekly = —ﬂVz +7W1
ekly = —pU, + %z"
131
ek14 = :L-“;L
d¢,
ekls = ﬂ2W1
eklg = 25—?1
P.1i2Y
ek21 €1

ek2,; = ﬂVl +7W2

ek2s = AU, + i?z

ek2, = :‘T:‘,’z

ek2s = B*W,

ek2 = -2/3%%
fl. =NX,
fla =NY,
fl3 = NXY,
fli=MX,
fly = MY,
fle = MXY,

(5.2.46)

21 =NX,
f2: =NY,
f2s =NXY,
2, =X,
f2s = MY,
f2s =MXY,

(5.2.47)

and ekl;, ekly, ell;, el2;, f1; and £2; are the ith row elements of {ek1}, {ek2},
{el1}, {el2}, {f1} and {f2} respectively. By substituting Egs. (5.2.41) through (5.
2.43) into Eq. (5.2.39), it can be shown that

() -{ia) [

T T T
{el1} [c] [0
+{ {612}} o rel ] . (5.2.48)
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For a single finite element (see Fig. 5.2.1), the buckling displacements Uy, U,

Vl, Vz, Wl and Wg are written as

U1(€) = {U1}7{2:(6)} V() = {(v2}T{¥2(1)}
sz(zl) = {U2}T{‘I’2(El)} WI(EI) = {WI}T{QI(EI)} (5-2~49)
ADERL L AR Wa(€) = (W2}T{9(8,)}

where {#:(F))}, {2280} {81 ED} {¥2E)}, (0 (E)}, and {a(F,)} are vectors
of polynomials whose dimensions depend on the type of interpolation employed and
{U1},{U2}, {V1},{V2},{W1} and {W2} are vectors of nodal buckling displace-
ments and rotations. The domain of Z, in this case is understood to be from £; to
EF. {Qu(E,)}, and {Q5(E,)} are Hermite polynomial interpolation functions of or-
der three and {@1(£,)}, {22(81)}, {¥1(§;)} and {¥3(£,)} are Lagrange polynomial
interpolation functions of at least order one. Substituting Egs. (5.2.48) and (5.2.49)
into Eq. (5.2.45), the second variation of the nondimensional total potential energy for
a single cylindrical shell element and a single specified circumferential wave number ,
n, can be written in terms of a stiffness matrix, [K®(n)], which is not a function of the
applied loads, and a geometric stiffness matrix, [K&(n; A)] which is a function of the
applied loads indicated by the load parameter A. The matrices [K*(n)] and [K&(n; A)]
along with the finite element model of the second variation of the nondimensional total

potential energy appear in Appendix C.



5.3 Finite Element Model of The Second Variation Of The
Total Potential Energy of a Laminated Annular Plate

The development of the finite element model for the second variation of the total
potential energy for the laminated annular plate follows the same steps as the develop-
ment of the model for the cylindrical shell; however, initial geometric imperfections in

the annular plate are ignored. The total potential energy for the perfect annular plate

element is
M= /6 | /€ J o @a- %)d{adg,de, + Mioed (5.3.1)
where
o11
{o} = 022 (5.3.2)
T12
and
€11
{e} = { €22 } (5.3.3)
T2

where o;; is a stress with respect to the §;£; coordinate direction, ¢;; is a strain with
respect to the &;¢; coordinate direction and II;o,4 is the potential energy of the inter-
active loads between elements and extemally applied loads. Setting the cone angle ¢
equal to ninety degrees (see Fig. 3.3.1) in Egs. (3.3.1.5) through (3.3.1.9), the strain-

displacement relations are

a1 = 5:1(51,52) + &x11(6, &2) (5.3.4)
€22 = €35(£1,62) + Eaxa2(£1,62) (5.3.5)
1z = 12(€1,€2) + €ax12(61,§2) (5.3.6)
where
] -] 2
€1 = g—'& + -;- (g'g) (5.3.7)
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. R 6uy up 1 R _B_ui]z
=k

2 R_6H oG R-G R-6) %
LR _\oui, v r 5.3.8
{2[(12—:1) % T R-G (5.38)

. R Ou®  Oul ul R 0ug dus .
= — 2 3.9
MR 06 T 0  R-6 R oG 06 (53.9)
K11 = _6;;; (5.3.10)
1
_ R \*&u , 1 0u

w22 = (R— el) o2 T R-& o (53.11)
Kiz = — 2R 0us 2R Ous (5.3.12)

R—§ 0606 (R-¢&) 06
and all of the terms in Eqgs. (5.3.4) through (5.3.12) have been defined in section
3.3.1. Note that an extra nonlinear term (in { }) has been added in Eq. (5.3.8). This
is necessary in order to represent a buckled mode shape of the annular plate dominated
by in-plane buckling displacements rather than normal buckling displacements. Such

a situation would arise if the radial depth of the plate was so small that the structure
buckled like a curved beam rather than a flat plate. Substituting Eqgs. (5.3.4) through
(5.3.12) into Eq. (5.3.1) and integrating with respect to {3 gives

n=; /& /&“N 1 (e} + 07 (61} (1 - D)dtadts + Mows (5:313)

where, as in Egs. (3.3.2.2) and (3.3.2.3),

Ny o
{N}= { Ni2 } = / { 022 }dfa (5.3.14)
N2 &

T12
and
My, o1
{M}=( My ¢ = / €3¢ 022 ¢ ds (5.3.15)
My, & T2
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are stress resultants and stress couples and the superscript T indicates the transpose of

a matrix or vector. ‘Eq. (5.3.13) written in nondimensional form (see Table 1) is

I= %_/41 cz{{W}T {©}+ (M) {=H0 - %Ex)dfzdfl + Iioad (5.3.16)

where () indicates that () is a nondimensional quantity defined in Table 1. Also de-
fined in Table 1 are the nondimensional membrane stiffnesses A.m, the nondimen-
sional membrane-bending coupling stiffnesses B, and the nondimensional bending
stiffnesses Dn. used in the nondimensional form of the stress-strain equations (Eq.
(3.3.2.1)) given by

(N ) rAn 4 zxe B Bz Bie | gx ) ( 51 )
x 22 ixz ﬁzz %:s g 21 Bzz gzs 29 €2
12 | _ |4 Az Ase Be1 Bez Des - 5
< M (= |Bu Ba Ba Du Diz Die ‘ %:: r=Lel) %ﬁ &
M2, 12 Bz Be2 Diz Dy Dis K22 %22
(M12) LBis Bas Bes Dis Das Des) | 7y, ) | ®12 )
(5.3.17)

Note that since the individual lamina of the plate are assumed to be monoclinic with
respect to the midplane of the plate defined in a cylindrical coordinate system rather
than a cartesian coordinate system the stiffnesses are constants with respect to (£;,&).
Following the same procedure outlined in section 5.2, the second variation of the total

potential energy written in nondimensional form is

7= [ [ (FY &)+ (Y 157+ (M) (7 )+
TR

()7 ()1 - o) By + P Miees (5:318)

where {F} and {Tf} are nondimensional buckling stress resultants and stress couples
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given by

—
’ ﬁ}l ‘ rAn
Nz A
AL L1
M, gu
i
M 12
st L B
{ lu12 ) L D16

le le -3-11 Bz B | 6?11 ) ( 51 )
Az Az §21 gzz B L9 8¢y,
Az Aess Ber Bez DBes 55 - 55,
= fuedh - _ {9012 % = 12

By B Du Diz Dis| | 67n (=tel 6%’11 }
22 Bez Diz Daz Dis 6?22 Ezg

26 Bes Dis D2 Deed | 67y ) | 6%12 )

(5.3.19)

The second variation of the nondimensional total potential energy analogous to Eq.
(5.2.45) for the cylindrical shell is obtained as follows: take two variations of the
strain-displacement equations (Egs. (5.3.7) through (5.3.12) and substitute the result-
ing expressions into Eq. (5.3.19). Then substitute for the nondimensional midplane
buckling displacements ¥,’,7,' and ;' and the nondimensional buckling stress re-

sultants and stress couples -1\7",1,

series representation

{

\

\

—

[ —

Ny, Nz My, My, and M, the following Fourier
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W1 (1)) ( TWa(61) )
VWI(EI) ’Sinﬂzz"l' ) VWZ(EI) >cosﬂ-6-2
WW.(E,) WW2(£,)
( NWXi(€,) ) ( NWX,(£,) )
WI(ZI) »sinﬂf, + ¢ N ii s 2(?1)
NWXY(E,) NWXY,(£,)

(5.3.20)

\ cos B€, (5.3.21)




(Mn)  ( MPX(G) ) MWX.(E)
13 | _ ) TG gnpr, + | TWYLE) | cosBE (5:3.22)
M, \WI(EO J MWXY,(E,)
with
ﬂ-ﬁé (5.3.23)

where n is a circumferential wave number, L is the length and R is the middle surface
radius of the cylinder to which the annular plate is attached (see Fig 3.3.1)).

For a single finite element (see Fig. 5.3.1), the buckling displacements TW,,
TW,, VW,, VW,, WW,, and WW, are written as

TW,1 (&) = {(UW1}7{&:(%,)} VW,(&;) = {(VW2}T{¥,(¢,)}
TWa(E,) = {UW2)T{&:(%,)} WWi(§,) = {(WW1}T{u(E,)} (53.29)
VWa(@E) = {(VW1T{¥,(E,)}  WW.(E,) = (WW2}T{Q(€,)}

where {#1()}, {22(€:)}, {(%1(6)}, {¥2(€1)}, {(E))}, and {Da(¢,)} are vec-
tors of the same polynomials used in Eq. (5.2.49) and {UW1}, {UW2}, {VW1},
{(Vvw2}, {WW1} and {WW2} are vectors of nodal buckling displacements and ro-
tations. The domain of £, in this case is understood to be from &; to &t As was
the case for the cylindrical shell, the second variation of the nondimensional total po-
tential energy for a single annular plate element and a single specified circumferential
wave number, n, can be written in terms of a stiffness matrix, [K¢(n)], which is not
a function of the applied loads, and a geometric stiffness matrix, [K&(n; A)] which is
a function applied loads indicated by the load parameter A. The matrices [K*(n)] and
[K&(n; X)) along with the finite element model of the second variation of the nondi-
mensional total potential energy appear in Appendix D.
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5.4 Finite Element Model of the Second Variation Of The
Total Potential Energy of the Ring-Stiffened Cylinder :
Assembly of Global Stiffness and Geometric Stiffness Matrices

The finite element model of the second variation of the nondimensional total po-
tential energy (IT) of the ring-stiffened cylindrical shell for a specified value of the
circumferential wave number, n, is formed by adding together the contributions to
TT from each individual finite element, TI". Using Egs. (C.1) from Appendix C and
(D.1) from Appendix D, This sum can be expressed as

N
§T(n; A) = Z(52ﬁ'(n; 2) + 6°My04)

= Z(—{W‘}T [K*(n){W*}
e=]

+ T{W°}T[K&(n: MW} + 67T0},..4). (5.4.1)

where [K¢(n)] is an elemental stiffness matrix and [K&(n; A)] is an elemental geo-
metric stiffness matrix, N is the total number of finite elements in the ring-stiffened
cylinder and 621T},,; contains terms associated with the boundary conditions at the
ends of each element. Compatibility of the nodal buckling displacements and equilib-
rium of the corresponding nodal buckling forces and nodal buckling moments at node
points where elements are joined are enforced by assembly of the element stiffness and
geometric stiffness matrices into the corresponding global (or structural) stiffness and
geometric stiffness matrices (see Reddy'°®). This assembly, along with the imposition
of the boundary conditions at the ends of the cylinder and the inboard edges of the at-
tached ring webs, results in the vanishing of the term Ee_l 6°M,,,, in Eq. (5.4.1). In
~ order to minimize the bandwidth of the resulting structural matrices, the element matri-
ces are first reorganized so that the nodal buckling displacements and rotations ({W*}),

for the cylinder elements (see section 5.2) can be written as
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(we}T = {U1* Vi® W1® R1® U2® V2* W2°
R {U1™} {vi™} (U2™} {v2m} U1t vie!
W1¢+l R1c+l U2e+l V2c+l W2e+l R2e+l}T (5.4.2)

and the nodal buckling displacements and rotations for the annular plate elements (see

section 5.3) can be written as

(we)T = {UW1* VW1* WW1° RW1¢ UW2* VW2* Ww2e
RW2¢ {UW1™} {vwi™} (UwW2™} {vw2™} Uwit!
VWit wwiet! Rwiet! yweet! vwaeH!
ww2ett Rw2et)T (5.4.3)

where the superscript e indicates quantities at initial nodes of the element, e + 1 in-
dicates quantities at the final node of the element, m indicates quantities at midlength
nodes of the element used for Lagrange quadratic or cubic interpolation of the tangen-
tial (or in-plane) buckling displacements and if
R, = 1‘2‘—@—‘2 and R;= ﬂé@ (5.4.4)
3 d¢,
are nondimensional buckling flexural rotations in the cylinder (see Eq. (5.2.41)) and

=) oy W, - —dWWa(6) (5.4.5)
d¢, d¢,

are nondimensional buckling flexural rotations in the ring web (see Eq. (5.3.20)) then
R1° and R2¢ are nodal flexural rotations in a cylinder element used in the Hermite
cubic polynomial interpolation of W,(£,) and W,(,) respectively and RW1¢ and
RW?2¢ are nodal flexural rotations in an annular plate element used in the Hermite
cubic polynomial interpolation of WW ,(£,) and WW,(£,) respectively (see Egs.
(5.2.49) and (5.3.24)). For both cylinder and annular plate elements, nodal buckling
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force and moment quantities, {F*}, are related to nodal buckling displacements and

rotations, {W*}, by the expression
{F°} = [[K°] + [KG]{W*}. (5.4.6)
where, for the cylinder element (see Fig. (5.2.1)),

(F}T ={P1° S1° Q1 M1° P2 S§2* Q2
M2¢ {P1™} {S1™} {P2™} {S2™} P1¢¥! S1°%!
Q1e+l M1c+l P2¢+l 52e+1 Qze+l M2e+1}T (547)

and for the annular plate element (see Fig. (5.3.1)),
{Fe}T = {PW1* SW1¢ QW1* MW1* PW2* SW2* QWz2°
MWwW2e {PW1™} {Sw1™} {Pw2"} {Sw2™} PwWiH
SWietl Qwit! Mwiett pwaet! swaet!
Qwaetl Mwaet)T (5.4.8)

Fig. 5.4.1 shows a typical ring web intersecting the cylindrical shell. It is as-
sumed that the outboard edge of the web is connected to the middle surface of the
cylindrical shell by a small rigid link of length ecc representing the small offset created
by the thickness of the ring flange and the small fillet radius where this flange connects
to the web. In order to assemble the element matrices of the two cylindrical shell ele-
ments joined at points P, in Fig. 5.4.1 with the annular plate element having its initial
end at point P, in Fig. 5.4.1, compatibility of the nodal buckling displacements and
rotations and equilibrium of the nodal buckling forces and moments at P, must account
for the eccentricity of P, from P, (ecc). Since the offset, ecc, is a rigid link, buckling
displacements, rotations, forces, and moments at P,, can be written in terms of buck-
ling displacements, rotations, forces, and moments at P, if the proper transformations
are applied to the quantities at P, that account for ecc and the different local coordi-
nate systems used for the cylindrical shell elements and the annular plate elements.
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Transformation of the nondimensional buckling displacements and flexural rotations at
the outboard edge of the annular plate, written in terms of the annular plate local co-
ordinate system, into the corresponding set of nondimensional buckling displacements
and rotations at the middle surface of the cylindrical shell, written in terms of the local

cylindrical shell coordinate system, is achieved by using

(1) wes = — (t_I:') (ﬁa')c,; (5.4.9)

(T2 ) wep = (1) g + (é) ecc ((ous' /aZ,))cy, (5.4.10)
@) = () @ )o + 2 (00 5E1) (s.411)
(83" /81)) ooy = ((8T3'/8Ey)),, (5.4.12)

where L is the length of the cylinder and ¢, is the total thickness of the cylindrical
shell (not including ring flanges). The subscript web indicates buckling quantities at
the outboard edge of the annular plate written in the annular plate midplane coordi-
nate system and the subscript cy! indicates the corresponding buckling quantities at the
middle surface of the cylindrical shell written in the cylinder middle surface coordinate
system. Quantities with overbars indicate nondimensionalized quantities defined in Ta-
ble 1. Substituting Eq. (5.3.20) through (5.3.22) into Egs. (5.4.9) through (5.4.12)
and equating quantities multiplying sin S, and cos €, results in

(TW, ) (TW (&) )

VW) VW)

WW; ) LA

RW, €) | _p1d BW: &)

U‘W’;”‘:(gl) = [T § W-;'i &) > (5.4.13)
vw," () VW' (&)

ww," (&) WW,' (€)
\ RTV—;“ (51) / \ -RW;, (El) /
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where

-0 0 <-L/t, 0 0 0 0 0
0 1 0 0 0 0 —Lechft, O
t,/JL 0 0 —e&e 0 0 0 0
0 0 0 1 0 0 0 0
Gl=1 ¢ o 0 0 0 0 -—L/t, 0 (5.4.14)
0 0 Leech/t, O 0 1 0 0
0 0 0 0 ¢t/L 0 0 —gec
L0 0 0 0 0 0 0 1

and RW, and RW, are defined in Eq. (5.4.5). Substituting the finite element model
for the annular plate buckling displacements (Egs. (5.3.24)) into Eq. (5.4.13) and or-
ganizing the nondimensional nodal buckling displacements and rotations as shown in
Eq. (5.4.3), the transformation of the nondimensional nodal buckling displacements
and rotations for the annular plate finite element to nondimensional nodal buckling dis-
placements and rotations at the middle surface of the cylindrical shell in the cylindrical
shell coordinate system is accomplished using Eq. (5.4.15) below.

{weyeet = [T] {(we)}v (5.4.15)

Note that only quantities at the most outboard node of this annular plate element need
to be transformed, In Eq. (5.4.15) web indicates nodal quantities at the most outboard
node of the annular plate element in the annular plate coordinate system, cyl indicates
nodal quantities at the point of intersection in the middle surface of the cylindrical
shell in the cylindrical shell coordinate system and

(73] [o] [0]
[T]=|{ [o] 1] [0] (5.4.16)
[0} [0] (]

where [T3] is given in Eq. (5.4.16) and [I] is an identity matrix. It can be shown that
the nondimensional nodal buckling forces and moments, {F*}, from Eq. (5.4.8), at the
outboard node of the annular plate element can be transformed to corresponding nodal
quantities at the point of intersection in the middle surface of the cylindrical shell by

{Fe}r! = [T]T {Fe}vet (5.4.17)
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where [T]T is the transpose of the matrix defined in Eq. (5.4.16). Using Eqgs. (5.4.15)
and (5.4.17) it can be shown that, for the annular plate element, [T)T[K*][T) is the
wransformed element stiffness matrix and [T)T[K&][T] is the transformed element ge-
ometric stiffness matrix which can now be assembled into their respective global or
structural matrices.

Once all of the necessary transformations have been made and the structural ma-
trices are assembled, boundary conditions at the ends of the cylinder and at the inboard
edges of the ring webs must be imposed. The cylinder ends are assumed to be clamped
while the inboard edges of the annular plates are assumed to be free. For the cylinder,

this may be stated mathematically as

(3171'/332) = (3'72'/332) = ‘_‘3 = (6‘73'/321) =0 at zl =z

%. (5.4.18)
Substituting Eq. (5.2.41) and Egs. (5.2.49) into Eq. (5.4.18) results in
U =U2=V1i=V2=W1'=W2 =RlI'=R2' =0 (5.4.19)
and
U1l =02 =v1f =V =WV =W2/ =R/ =R2/ =0 (5.4.20)

where the superscript ¢ indicates quantities at the initial node of the first cylinder el-
ement and the superscript f indicates quantities at the final node of the last cylinder
element. The free edge boundary conditions at the inboard edges of the ring webs are

Nu=Nu=Vu=M,;=0 at §, = -ILL”E (5.4.21)
where N, is the nondimensional buckling radial stress resultant, N is the nondi-
mensional buckling in-plane shear stress resultant V1.1 is the nondimensional buckling
Kirchhoff shear stress resultant, M, is the nondimensional radial stress couple, Hw is
the radial depth of the web, and L is the length of the cylindrical shell. Following the
same procedure used to develop Egs. (5.4.19) and (5.4.20), the boundary conditions
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at the inboard edges of the ring webs in terms of nodal buckling forces and moments
defined in Eq. (5.4.8) are

PW1! = Pw2/ = SW1! = SW2f = QW1/ = QW2/ = MW/ = MW2/ =0
(5.4.22)
where here the superscript f refers to quantities at the final node of the most inboard
annular plate finite element of a ring web.

Assembly of the element matrices and imposition of the homogeneous boundary
conditions of Egs. (5.4.19), (5.4.20) and (5.4.22) results in the final form of the finite
element model for the second variation of the nondimensional total potential energy for
the ring-stiffened cylindrical shell given a specific value of the circumferential wave
number, n, and the load, A

#T(m; 2) = ZHWYT(IK ()] + [Ka(ms )] {W) (5.4.23)

where [K(n)] is the global or structural stiffness matrix, [Kg(n; )] is the global or
structural geometric stiffness matrix and {W} is the global vector of nodal buckling
displacements and rotations.
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5.5 Formulation of the Nonlinear Buckling Eigenvalue Problem

Stability of the prebuckled equilibrium configuration is guaranteed if ([K(n)] +
[Ke(n; \)]) in Eq. (5.4.22) is positive definite. The loading which results in a critical
situation - where ([K(n)] + [Kc(n; )] ) first becomes positive semi-definite - can be
determined through the application of Trefftz’s criterion

§ (6%T(n; A)) = 0. (5.5.1)
Substituting Eq. (5.4.22) into Eq. (5.5.1) results in
([K(n)] + [Ka(n; A)]){W} = 0. (5.5.2)

The global geometric stiffness matrix, [Kg(n; )], is a nonlinear function of the
applied load; hence, Eq. (5.5.2) is a nonlinear algebraic eigenvalue problem. Nontriv-
ial solutions of this problem determine critical loads and associated mode shapes for
the specified value of the circumferential wave number, n. Given some initial loading
P° (axial compression), T° (torsion) and p° (lateral pressure), it is assumed that the
structure is loaded to buckling so that P° and T'° retain their original proportion and
p° remains constant. In other words, the combined loading is defined by the constant

pressure, p°, and the load parameter A where
A=P/P°=T/T° : (5.5.3)

Newton’s method is applied to Eq. (5.5.2) (see Eq. (3) of Ref. 106) necessitating so-

lution of a sequence of linear algebraic eigenvalue problems of the form
{[K(n) + Ka(n; X)) + BMKg(n X)[HW} = {0} (5.54)

where () indicates differentiation with respect to A. A is a correction to A, the cur-

rent estimate of A, (see section 5.1), which approaches zero as as A approaches An.
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In order to insure that M} < )\, after each iteration, only a fraction of A should be

added. In other words
AL =2 rAD (5.5.5)

where 0 < r < 1 (see Sun!®7). It has been observed that r = 0.5 is usually adequate

to insure that A*! does not exceed A,. When A+ is close to A’ to within a specified
tolerance, the iterations stop. At this point A' = ), and the {W} found from the last

solution of Eq. (5.5.4) along with Egs. (5.2.41) and (5.3.20) define the related mode

shape. The smallest \,,, along with its corresponding mode shape, found over all val-

ues of n is the buckling load and buckled mode shape of the ring-stiffened cylinder.
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Chapter 6
OPTIMAL DESIGN ALGORITHM

6.1 Introduction

One objective of the present study is to design minimum weight (denoted by F))
generally anisotropic ring-stiffened cylinders loaded by combined axial compression,
torsion, and internal pressure. The cylinders are characterized by a set of design vari-
ables X; (i = 1,2,...,n4, Where ngy, is the total number of design variables) that
define the geometry and the laminate properties of the shell. The design is subject to a
set of constraints to insure that the structure does not buckle under the imposed loads,
g8 .j = 1,2,..,ng, where ng is the total number of buckling constraints (several
buckling constraints on both the minimum buckling load and the buckling loads asso-
Vciated with higher modes may be necessary in order to account for the possible occur-
rence of mode coalescence and mode switching), and that the prebuckling stresses at
selected locations in the structure do not exceed their allowable limits. The stress con-
straints are represented by ¢} , k = 1,2, ..., ng,, Where ng, is the total number of stress
constraints. A set of lower bounds X| and upper bounds X on the design variables
are also specified. Mathematically the optimal design problem is stated as

minimize F(X)) i=1,2,..,n4
subjectto g} >0 j=1,2,..,n0
9120 k=1,2,..,ng
Xi=X!>0
X'-X:>0 (6.1.1)

In the present study, both the objective function, F, and the behavioral constraints
g} and g{ of Eq. (6.1.1) are generally nonlinear functions of the design variables, Xi;
hence, Eq. (6.1.1) is a nonlinear mathematical programming (MP) problem that needs
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to be solved using the methods mentioned in section 1.3.3. Use is made of both an in-
direct MP technique, described in section 6.2, and a direct MP technique, described in
section 6.3, in the present study. In section 6.4, the various design variables used in the
present study are discussed. Sections 6.5 and 6.6 contain a formulation of the stress
and buckling constraints respectively. Section 6.7 contains a brief outline of the sensi-
tivity analysis. A discussion of the criteria used to establish optimality of a candidate

design is presented in section 6.8.
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6.2 Quadratic Extended Interior Penalty Function Method

The indirect mathematical programming technique used in the present study is
the sequential unconstrained minimization technique based on the quadratic extended
interior penalty function!!3, The method is implemented in the NEWSUMT-A!!* com-
puter program, used in the present study, that internally converts Eq. (6.1.1) to a se-

quence of unconstrained minimization problems that have the form

8(%,r,) =F(R) + 15 [3 pah) + 3 plod) + 3 p(Xi — XD+
j=1 k=1 =1
3 p(X¥ — X (6.21)

=1
where & is the pseudo-objective function, r, is the penalty parameter, and p(g)isa
penalty function associated with constraint ¢ which has the form

{ %, if g > go:

pg) = (6.2.2)
L(L)?-3(L)+3], ifg<y

where g, is a user-specified transition parameter. Note that when g > g, the method
is essentially the interior penalty function SUMT!!®, The quadratic extension is added
for g < g. in order to allow for constraint violations which may occur during the opti-
mization process. The quadratic extension also has continuous second derivatives at g,
which is desirable if second order methods (Newton’s method, for example) are used
to solve the unconstrained minimization problefn. To determine the optimum design,
Eq. (6.2.1) is solved repeatedly by decreasing values of r, until some specified con-
vergence criterion is met (see section 6.8). Since, for each specified value of rp, Eq.
(6.2.1) is a nonlinear function of the design variables, X, this unconstrained minimiza-
tion problem must be solved iteratively. At the beginning of each new iteration from
the design, X4, a move, oS, within the design space that reduces & must be deter-

mined in order to generate an improved (lower weight) design, X9+, In other words,
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improved designs are generated at each iteration where
Xt =X14+af (6.2.3)

Many methods exist to determine the search direction S. NEWSUMT-A employs
Newton’s method with approximate second derivatives of the objective function and
constraints with respect to the design variables. As shown in Ref. 113, these approx-
imate second derivatives are formed using only the first derivatives of the objective
function and constraints with respect to the design variables. Use of Newton’s method
with approximate second derivatives to determine S and solve Eq. (6.2.1) is desirable
since the method has the efficient convergence characteristics of a second order method
but does not require the computationally expensive calculation of second derivatives.
Once $ is determined, Eq. (6.2.3) is substituted into Eq. (6.2.1) leaving the following

one-dimensional unconstrained minimization problem
minimize  &(a). (6.2.4)

Eq. (6.2.4) is then solved for the optimum step size a*. In NEWSUMT-A this is done
using the Golden Section Search algorithm (see Chapter 4 of Ref. 9). Knowing a* and
S, at each iteration the improved design is then

X1 =X14a* 8. 7 (6.2.5)

For the specified value of r,, iterations continue until no further reduction in ¢, the
pseudo-objective function, is possible. The penalty parameter is then reduced and an-
other unconstrained minimization is performed. This process continues until final con-

vergence is achieved.
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6.3 Method of Feasible Directions

Sequential unconstrained minimization techniques such as the one described in
section 6.1 are popular because they are generally reliable and easy to implement. The
interior penalty function SUMT is particularly desirable since the method generates a
sequence of steadily improving feasible designs that funnel down the middle of the fea-
sible region of the design space toward the optimum!?®, On the other hand, sequential
unconstrained minimization techniques tend to require a large number of evaluations
of the objective function and the constraints necessitating the use of approximations to
these functions when their evaluation is computationally expensive!!?. Furthermore,
the pseudo-objective function, @, of Eq. (6.2.1) tends to be numerically ill-conditioned
as the design vector, X, approaches a constraint boundary where constraints become
active (g = 0). The method of feasible directions'?®11%, another popular optimal de-
sign algorithm, is especially suited to the search for an optimum design at or near con-
straint boundaries. .

Feasible directions is a direct ﬁethod, requiring separate treatment of the objective
function and constraints without grouping them together into a single pseudo-objective
function. From a point on the boundary of the feasible domain, the method of feasi-
ble directions is applied to determine a search direction, 5, that produces a design that
reduces the objective function, F', (making S a usable direction) while keeping the de-
sign as far from the constraint boundary as possible (making S a feasible direction).
Hence, a constrained maximization subproblem can be defined having the elements of

§ as the unknown variables. This problem is stated as

maximize § =
subject to —5-6g5+9j550 j€I4
5-VF+$<0
8,20
§  bounded (6.3.1)
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where I is the set of constraints that are active (¢; = 0) at X1, the current design,
ﬁg,- is the gradient of the j*» active constraint, VF is the gradient of the objective
function, and the 6; are “push-off” factors that determine how far X %! will be from
the constraint boundary upon a move along § with @ = 1.0 (see Eq. (6.2.3)). For
highly nonlinear constraints, a large value of 6; may be necessary to prevent a small
move (small step size a) along § from producing a design that violates adjacent con-
straints. For linear constraints, §; = 0 is reasonable since a move in a direction tangent
1o a linear constraint can be made without violating that constraint. The constraint “5
bounded” has traditionally been imposed by requiring

~10 < S <10 i=1,2,..., N (6.3.2)

Egs. (6.3.2) and (6.3.1) define a linear (convex) constrained minimization prob-
lem for the elements of the search direction vector, S, that can be solved by the sim-
plex method (see section 3.6 of Ref. 9), a very efficient technique for solving linear
programming problems. Unfortunately, as discussed in section 6.5 of Ref. 120, bound-
ing § as shown in Eq. (6.3.2) biases the search direction - a significant drawback.
This drawback can be avoidéd by bounding the Euclidean norm of S, instead of the
individual terms of $, in the following way '

§ . 8§ < 10 (6.3.3)

While replacing Eq. (6.3.2) with Eq. (6.3.3) adds a nonlinear constraint to Eq. (6. 3.
1), Zoutendijk'® has shown that this constraint can be re-written in a form that ren-
ders Eq. (6.3.1) solvable using linear programming techniques.

The method of feasible directions is one design optimization option in the ADS2!
design synthesis computer program, which is used in the present study. Once Eq. (6.
3. 1) is solved for §, a one-dimensional search for a® must be performed as noted in
section 6.2. The option in ADS chosen to perform this one-dimensional search is the

Golden Section search algorithm for minimization of constrained functions of one vari-
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able. Iterations involving calculations of § from Egs. (6.3.1) (6.3.3) and the determi-

nation of a* continue until convergence is achieved.
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6.4 Design Variables

Design variables can generally be classified as either continuous or discrete. Con-
tinuous design variables are allowed to take on any value between their specified upper
and lower bounds; however, discrete design variables are constrained to take on only
certain specific values between these limits. As was mentioned in section 1.1, a wide
variety of design variables is available to the designer of laminated composite structure.
These design variables include number of plies with the same fiber orientation within
each layer of the laminate (or layer thicknesses), laminae fiber orientation angles, and
the lengths of the various segments comprising the stiffening rings. Treatment of seg-
ment lengths as continuous variables generally does not cause any difficulty during
fabrication since most parts can be readily machined to virtually any length. Treatment
of lamina fiber orientation angles as continuous variables is also reasonable; however,
in some instances it may be more cost-effective to limit the choice of angles to a spe-
cific set such as 90°, +45°, and 0°. Treatment of the number of plies within a lamina
as a continuous variable may not be reasonable in designs where the structure is to be
fabricated from prepreg having a specific ply thickness since non-integer values call for
fractions of plies.

If lamina thicknesses, fiber orientation angles, and ring segment lengths were all
treated as design variables in the structural sizing of an eight layer cylinder with a sin-
gle ring stiffener made of an eight layer flange and an eight layer web, the number of
design variables would be very large. The approach taken in the present study is to use
only a small subset of the total number of design variables available, leaving problems
involving larger, more complicated sets of design variables for future study. By start-
ing with a small set of design variables and working toward larger sets, it may become
evident at some point in the process that a further increase in the number of design
variables, with the associated increase in the complexity of the problem, may not be
cost-effective.

In the present study, lamina fiber orientation angles are not considered as design
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variables. Since structural weight is the objective function to be minimized, the objec-
tive function is independent of the lamina fiber orientation angles. This independence
can create computational difficulties in some cases. Furthermore, the work of Onoda™
and Fukunaga and Vanderplaats'?? indicates that lamination parameters may be prefer-
able to fiber orientation angles as design variables. As shown in Refs. 74 and 122, the
laminate constitutive equations can be written in terms of these lamination parameters
which are harmonic functions of the fiber orientation angles. Another simplification
used in the present study is that the number of plies with the same fiber orientation
within each layer of the laminate will be treated as continuous design variables since
this is sufficient for theoretical purposes. The use of discrete design variables intro-
duces additional complexity into the problem that is beyond the scope of the present
study. For fabrication purposes, the number of plies in each lamina can be rounded to
integer values. While recent developments'?* may render this practice of rounding ob-
solete, further evaluation of methods such as those presented in Ref. 123 is warranted
before such methods are applied to the solution of nonlinear problems such as the one

of the present study.

A problem in which lamina thicknesses are design variables is one example of
a sizing optimization problem. Other than a reasonable choice for upper and lower
bounds on these design variables, no other special considerations are needed. In the
present study, ring segment lengths are also considered as design variables. Problems
in which ring segment lengths are design variables, however, are more closely related
to shape optimization problems since a change in these designs variables causes a
change in the position of the boundaries of the various shell branches. Use of these
design variables does not compiicate the analysis of the preb\ickled equilibrium con-
figuration since this analysis is based on exact, closed-form solutions to the govemn-
ing equations. However, caution must be exercised in the buckling analysis since the
buckling loads are calculated based on the finite element method. After each design
iteration, the finite element mesh must change in order to accommodate the new shell
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branch boundary positions. In the present study, a simple remeshing rule that translates
finite element node positions as a function of shell branch boundary changes is used.
It is assumed that the number of nodes within each shell branch remains equal to the
value set at the beginning of the design cycle. Care is taken in specifying upper and
lower bounds for the segment lengths that prevent distortion of the finite element mesh
to the point where the calculated buckling loads are no longer accurate.
In summary, the various design variables to be used in the present study are

1. Cylindrical shell lamina thicknesses

2. Ring flange lamina thicknesses

3. Ring web lamina thicknesses

4. Ring flange lengths

5. Ring web radial depths.
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6.5 Stress Constraints

The loads imposed upon the ring-stiffened cylinder must not produce stresses
within the structure that exceed the strength of the material from which the structure
is fabricated. Since the stresses in each lamina of each branch of the prebuckled shell
are continuous functions of the coordinates £, and £ (see Fig. 3.3.1), the requirement
that the structure not be overstressed represents an infinite number of constraints. In
general, however, only a small subset (if any) of these constraints will be active in the
final optimal design. Generally, stress constraints corresponding only to points having
coordinates £; and ¢; where these constraints exhibit a local minimum are retained. In
the present study, such points are at the coordinates £ = £5 and {3 = i+1 (see Figs.
3.2.1 and 3.2.2) of the individual lamina comprising the cylinder skin adjacent to ring
flanges and the clamped boundaries and ring webs at their most inboard edges.

Many different failure criteria exist that may be used as the basis for definition
of the stress constraints. The simplest of these criteria, maximum stress or maximurm
strain, fails to account for the interaction among the various stress components acting
at a single point. The Tsai-Wu'2* tensor polynomial approach is a popular failure cri-
terion that accounts for this interaction that has, in some cases, been used to accurately
predict experimentally observed failures. As pointed out by Hashin!?® however, the
Tsai-Wu criterion fails to account for the fact that failure in composites can occur in
one or more very different failure modes that might not be well represented by a sin-
gle smooth function such as that of Tsai-Wu. Hashin proposes a failure criteria based
on four separate failure modes: fiber tension, fiber compression, matrix tension, and
matrix compression. Rosen, et. al.!?® extended Hashin’s work by noting that the two
matrix modes are more accurately characterized by four distinct matrix modes: two
in-plane modes and two interlaminar modes dominated by interlaminar shear and nor-
mal stresses. The criteria of Rosen, et. al. have been chosen as the basis of the stress

constraints in the present study. These constraints are : at each specified point within a
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specified shell branch having coordinates £, and &3

¥ oy 20 then 10-—3x >0 (6.5.1)
11
If o1 <O0; then 1.0-{;—}, >0 (6.5.2)
11
2 2
If o3 >0; then 1.0- (-"—j?_,) - (lj) >0 (6.5.3)
922 Ti2
AC 2
. - _ [ %22 022 o2 \ _
If o022 < 0; then 1.0- [1.0 (2 )]aéc (27“42)
2
(1‘}) >0 (6.5.4)
Ti2 )
2 2 2
If o3 >0; then 1.0- (%) - [(’Lj:?—’l] >0 (6.5.5)
033 (m43)
UAC 2 033 033 2
If o33 <0; then 1.0- [10 (2 ‘3) 65‘30 (-—TE) -
2 + 72
[('l(é;r)‘:'s'l] >0 (6.5.6)
23

-whene the oij are normal stresses w1th respect to the : ] d1rectxons in the local material
Vcoordmate system (see Pigs 3 2.1 and 3.2. 2) the -r., are shear stresses with respect to
the ij coordinate directions, and the o/A7, 0 AC, and 7} are allowable tensile normal,
compressive normal (note that allowable compressive stresses are assumed to be neg-
ative values), and shear stresses, respectively, determined from simple unidirectional
coupon tests. Egs. (6.5.1) and (6.5.2) characterize fiber direction tensile and compres-
sive failure modes respectively. Egs. (6.5.3) and (6.5.4) characterize in-plane matrix
tensﬂe and compressive failure modes mspectwely while Egs. (6 5. 5) and (6.5.6) char-
'actenze interlaminar tensile and compresswe failure modes respectlvely ‘Note that Eqgs.
(6.5.5) and (6.5.6) may also be used to characterize failure in the ring flange/cylinder

skin attachment area.
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6.6 Buckling Constraints

The true “buckling” constraint is that the axisymmetric equilibrium configuration
of the ring-stiffened cylinder must remain stable under the imposed loads. The most
popular way of writing this constraint mathematically is to constrain the lowest buck-
ling load parameter to be greater than or equal to 1.0. In other words

1.0 = Aer > 0. (6.6.1)

As was discussed in section 2.3.2, it is not sufficient to impose only the single con-
straint, Eq. (6.6.1), without considering buckling modes having larger buckling load
parameters due to the possible occurrence of mode coalescence and/or mode switching.
In the case of buckling of a cylindrical shell, it may be difficult to predict a priori how
many of these higher modes must be accounted for.

In section 5.1 it was mentioned that the efficiency of the buckling analysis is
highly dependent upon the speed with which, for a specified value of the circumfer-
ential wave number n; (see section 5.1), the sequence of linear algebraic eigenvalue
problems (Eq. (5.5.4)) are solved for the load parameter increments (A)). Also men-
tioned in section 5.1 is the fact that the efficiency of the solution of Eq. (5.5.4) drops
substantially when [K(n;) + Kg(ni; A)] is not positive definite. Such a situation would
arise if, for a specified value of n;, critical load parameters related to modes higher
than those associated with the smallest critical load parameter must be calculated. It
was observed during the course of this study that, with the commercial eigensolvers
available, the solution of Eq. (5.5.4) could not be performed with sufficient computa-
tional speed to make the optimal sizing algorithm practical.

Calculating the precise value of A at which the structure will buckle along with
the associated mode shape whenever the optimization subroutine calls for a buckling
constraint evaluation is inefficient because it provides the optimizer with more infor-

mation than is actually needed. A new constraint more directly related to the stability
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(or lack thereof) of the axisymmetric equilibrium configuration can be formulated that
lends itself to much faster evaluation than the constraint based on the buckling eigen-
value formulation. This new constraint does not require the solution of an eigenvalue
problem; rather, it ensures that the matrix [K(n;) + Kg(n;; A)] remains positive defi-
nite, guaranteeing the stability of the axisymmetric equilibrium configuration. The con-
straint is formulated in sections 6.6.1 and 6.6.2 below.

6.6.1 LDLT Decomposition of [K(n;) + Ka(ni; A)]

It was mentioned in section 2.3.4 that Ringertz®® presents a technique for impos-
ing buckling constraints on designs of stiffened panels, characterized by a geometri-
cally nonlinear prebuckling equilibrium configuration and analyzed using a commer-
cially available finite element program, without solving a nonlinear eigenvalue prob-
lem. He develops the equivalent constraint

f: In(vi) 20 (6.6.1.1)

i=1
where N is the order of the global stiffness and geometric stiffness matrices ([K] and
[K]) of the finite element model and the +; are the eigenvalues of [K + Kg]. Unfor-
tunately, this constramt formulation stlll nequn'es the solution of an N th order eigen-
value problem for all N elgenvalues, which can be computauonally expensive for
large problems Haftka”'r presents an alternate technique for estabhshmg stabxhty
consu'arrgtfyylthout solvmg an exgenvalue problem Hxs method rehes on the symme-
ry of [K + KG] ([K (ni) + Kc,v(n,, )] in the present study). This property allows
[K(n;) + Kg(ni; A)] to be factored as

 [K(n) + Ka(n; \)] = (L] [D] [L]T (6.6.1.2)

where [L] is a lower triangular matrix with all diagonal terms equal to 1 and [D] is a
diagonal matrix. The matrix [K(n;) + Ka(ni; A)] is positive definite if and only if all
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of the diagonal terms, d;, of the matrix [D] are positive. In other words
d; 20 i=1,2,..,N. (6.6.1.3)

The computation of LDLT appears on pages 9 through 30 of Ref. 128 and is outlined
in Appendix E. As is shown in Appendix E, the banded nature of the matrix [K(n;) +
Ka(ni; \)] allows for very rapid factorization of this matrix even when its order is

very large.
6.6.2 Equivalent Constraint Formulation

Haftka!?” imposed the nonnegativity requirement on all of the terms of the [D]
matrix, shown in Eq. (6.6.1.3), as buckling constraints in the sizing of a wing bay
of the space shuttle orbiter. For the problem Haftka considered, Eq. (6.6.1.3) yielded
about 50 separate constraints. Similar application of Eq. (6.6.1.3) to the problem con-
sidered in the present study would result in a prohibitively large number of inequality
constraints. It can be shown that if the matrix [M] is factored into an upper triangular

matrix, [M"*], using Gaussian Elimination then
[M*] = [D][L]T; (6.6.2.1)

hence, the LDLT factorization can actually be produced using Gaussian Elimination. If
[M*] is made up of N-by-N square submatrices, then this Gaussian Elimination pro-
cedure is generally referred to as “Potter’s Method”. Blum and Fulton!?7 state that if
[m*] represents the kth submatrix (k = 1,2,..., V) appearing along the diagonal of
the upper triangular matrix, [M*®}, then all of the zero’s of the determinant of the origi-
nal matrix, [M], are contained in the determinant of [m™], the last submatrix appearing
along the diagonal of [M*]. Since the order of the submatrices is not restricted, then
[m*] can be 1-by-1 yielding the term-by-term Gaussian Elimination of Eq. (6.6.2.1)
and the corresponding LDLT factorization. The diagonal matrix [D] is then a matrix of
1-by-1 “submatrices™ corresponding to the [m*] submatrices of Potter’s Method. This
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means that if [K(n;) + Kg(n;; A)] is factored as shown in Eq. (6.6.1.2), then all of the
zero's of the determinant of [K(n;) + Kg(ni; A)] are contained in the very last term
of the [D] matrix in Eq. (6.6.1.2). This means that, for a given value of n, as A ap-
proaches A, (see section 5.1) from above, the first term of the [D] matrix to reach zero
will be the very last term, dy. During the course of the present study, this has been
observed in practice. | '

Starting from an initially feasible (all constraints satisfied) design, the structural
optimization algorithm developed for the present study is formulated to produce a se-
quence of steadily improved feasible designs. Approximations for either the objective
function or the constraints are avoided making it highly unlikely that convergence to
an infeasible design during any portion of the optimization process will occur. Since
the initial design and all subsequent improved designs are feasible, the axisymmetric
equilibrium configurations of all these designs are stable and the [K(n;) + Kg(ni; )]
associated with these designs for all circumferential wave numbers, n, are positive defi-
nite. Furthermore, the first term of the [D] matrix in the LDLT decomposition of these
[K(n;) + Kg(ni; \)] matrices to reach zero when A = ), (buckling occurs for the
specified value of n;) is the very last term, d 1\}, meaﬁhg that:of all the constraints de-
lineated in Eq. (6.6.1.3), dy > 0 represents the critical constraint. From an initially
feasible design, during movement in the design space to an improved design where
the A, associated with some values n; are reduced, no other term of the [D] matrix
associated with these n; will reach zero without dy reaching zero first. Hence, from
the initially feasible design, the calculation of the search direction, S, yielding an im-
proved design can be based on a single stability constraint for each specified value of
n;, namely '

dn(ni) 2 0 {=n5,n2,...,0 (6.6.2.2)

where ¢ is the total number of values of n to be considered in the constraint set and the
n; are the prescribed circumferential wave numbers.

Given a feasible design, then, when determining a search direction, S, all terms
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of the [D] matrix except the last one, dn, can be ignored in the formulation of the sta-
bility constraints for each n;. However, these other terms cannot be ignored during the
one dimensional search for the step length, a* (see Eq. (6.2.3)) because the function
dn(ni; X) has poles at values of A that are zeroes of these other terms. The function
dn(ni; A) exhibits a jump discontinuity at these poles and thus can jump from negative
to positive without passing through zero when A > Ap. During the one-dimensional
search, a candidate value of a* may move the design into the infeasible domain. If
dy is the only value returned to the optimization subroutine upon a call from the one-
dimensional search routine at this value of a*, the discontinuity exhibited by dy in
the infeasible domain could cause a positive value of the stability constraint to be re-
turned to the optimizer even though the design is infeasible. Fortunately, if the design
is infeasible, then at least one term of the [D] matrix must be negative. Such negative
terms can be used to augment the simple stability constraints specified in Eq. (6.6.2.2)
during the one-dimensional search to ensure that a negative stability constraint value is
returned to the optimizer whenever a candidate a* produces an infeasible design. An
equivalent exterior constraint is proposed that includes all of the negative terms in the
[D)] matrix. At a candidate design, if ngn is the number of these negative terms, not
including the last term, dy, then the equivalent stability constraint, for each specified

circumferential wave number, used in the present study is
dN, if ngn =0;

(6.6.2.3)

Ndn 1/2
—|dn] — E(d,)z] , if ngp > 0.
=1

The formulation of this constraint is based on the equivalent exterior constraint sug-
gested by Haftka, Giirdal, and Kamat (Eq. 7.4.3 on page 239 of Ref. 9) for constraints
that vary continuously with time. The idea of replacing a large number of constraints
with a single equivalent constraint grew out of the fact that specifying a constraint at
each time step would yield a prohibitively large number of constraints. A similar prob-

lem would occur in the present study if constraints were written for each diagonal term
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of the [D] matrix as the number of elements in the finite element model of the ring-
stiffened cylinder became large.

Use of the equivalent constraint defined in Eq. (6.6.2.3) in optimization algo-
rithms that operate in the infeasible region of the design space is not recommended.
Furthermore, even if the equivalent constraint formulation is abandoned in favor of the
specification of a constraint for every diagonal term of the [D] matrix of the LDLT de-
composition of [K(n;) + Kg(n;; A)] shown in Eq. (6.6.1.3), use of an optimization
algorithm that may converge to intermediate designs that are infeasible is still not rec-
ommended. This is because in the infeasible region of the design space the derivatives
of the d; with respect to the design variables, used to determine the search direction S,
are discontinuous. .

It was also discovered that in the feasible region of the design space the deriva-
tives of dy(n;) with respect to the design variables are extremely large when A is
close to Ap(n;). For example, for some designs when A — A,(n;) =~ 0.001 it was
observed that the derivatives, ddy /0X,, were approximately 100000 while the value
of the constraint was approximately S00. A constraint value of 500 does not appear
to justify considering that constraint as active until it is recognized that very small re-
ductions of the design variables (number of plies, length of ring flanges, etc.) produce
immediate violation of the constraint. Hence, one final modification to the stability
constraints was made to allow for a generous buffer zone preceding g} = 0 where de-
signs having stability constraints falling in this zone were considered infeasible. Thus
the final form of the stability constraints used in the present study is

97— Ghugy 2 0 i=1,2,...,1 (6.6.2.4)

where ¢ is the number of critical and near-critical circumferential wave numbers for
which constraints of the form shown in Egs. (6.6.2.2) and (6.6.2.3) are written, g} is
given in Eq. (6.6.2.3), and g:, 77 is the value of g® less than which the stability con-
straint is to be considered violated. A good value to assign to g}, #s is dependent upon
the particular problem being solved.
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6.7 Sensitivity Analysis

During the execution of the optimal sizing algorithm, the optimization subroutine
requires the values of the derivatives of F, g}, and g} (see Eq. (6.1.1)) with respect to
the design variables X; in order to determine the search direction S (see Eq. (6.2.3)).
In the present study, derivatives of the total structural weight with respect to the de-
sign variables, (9F/0X;), are evaluated in closed form. Derivatives of the behavioral
(stress and stability) constraints are evaluated approximately using the following for-
ward finite difference formulae

8g; _ 93(Xi + AX;) — g3(Xi)

5% = e (6.7.1)
g gH(Xi+AX:) - gh(X:
g, 9)(Xi+ AXi) - g;(X5) (6.7.2)

aX; AX;
where AX; is a small perturbation of the ith design variable. The calculation of the
derivatives shown in Egs. (6.7.1) and (6.7.2) requires ng4,+1 structural analyses where
ng, is the total number of design variables.
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6.8 Convergence Criteria

In sections 6.1 through 6.7, the structural optimization problem that is the focus of
the present study is formulated and methods are proposed for its solution. Since these
methods are iterative in nature, criteria must be specified to determine convergence
and the iteration cessation point. During the progress of the optimization algorithm,
convergence criteria are needed for both the optimum step size, a®, and the optimal
design itself. In the present study, it is assumed that the convergence criteria for a*
that are set internally in both NEWSUMT-A!'* and ADS!?! are adequate; however,
consideration of convergence criteria for the optimal design that are more precise than
those used in these optimization programs is warranted. Such criteria are the subject of
this section.

Convergence of the optimal design indicates when no further search directions,

S, need to be calculated and the calculation of new designs can be stopped. The most
popular criteria used to indicate convergence, used in both NEWSUMT-A and ADS,
are based on the absolute or relative change in the objective function after two or more
iterations. For example, if after three iterations the objective function has changed by
no more than some specified absolute or relative value the optimization process ceases.
Use of such criteria is certainly justified in order to terminate a constrained minimiza-
tion experiencing éomputationa.l difficulties; however, further criteria are needed to es-
tablish the proximity of the candidate design to a true local optimum. More accurate
determination of this proximity is particularly important when the relative merits and
difficiencies of several optimum designs are to be assessed in a study meant to reveal
design trends. If the absolute or relative change in the objective function is the only
criterion used to establish the optimality of a candidate design, it is impossible to dis-
tinguish designs that converged due to their proximity to a true local minimum from
designs that have not. Problems associated with numerical ill-conditioning may keep
the optimizer from finding a search direction that reduces the objective function even
though the current design is far from a local optimum. Hence, further criteria must be
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applied in order to determine when a local optimum has been located.

Unless both the objective function and the feasible domain are both convez (see
section 5.1.2 of Ref. 9), many local optima may exist in the design space. In the case
of a nonconvex problem it is not possible to mathematically establish the global opti-
mality of a locally optimum design without considering all local optima in the design
space. However, rigorous criteria do exist to establish local optimality of a candidate
design using information at the point in the design space defined by that design only.
For inequality constrained problems, such as the one investigated in the present study,
the necessary conditions for local optimality are

1. If a constraint, g, is not active (¢ > 0), its corresponding Lagrange Multiplier, A,
2. All of the Lagrange Multipliers associated with the set of g; 7 = 1,2,...,n, ac-

tive constraints (g; = 0) are non-negative and

Ve =VF- iA,ﬁgi =0 (6.8.1)
j=1
where £ is the Lagrangian function, V¥ is the gradient vector (derivatives with respect
to the design variables), and A; is the Lagrange Multiplier associated with the Jth
active constraint. These necessary conditions for optimality are known as the Kuhn-
Tucker conditions. V

Performing the dot product of both sides of Eq. (6.8.1) with a search direction, 5,
and rearranging terms yields

Ng
§.VF= ZA,’S . 69,'. (6.8.2)
—
¥S-VF (or §- 69,-) > 0 then a move along S increases F (or g;). If §.
VF (or §- 6g,~) < 0 then a move along S decreases F (or g;). Note that if
the A; are all positive and Eq. (6.8.2) is satisfied, it is impossible to have §- VF <
Oandall § - 6g,- > 0. Since g; = 0 for all active constraints, satisfaction of Eq.
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(6.8.2) means that if §-VF < 0, then at least one constraint will be violated if a move
along S is made. One remaining possibility is a move in a direction, S, along the local

tangent to the objective function and the active constraints where

- -

§.VF=5§-Vg;=0 i=1,2,...,n,. (6.8.3)

In some cases, a move along a direction S satisfying Eq. (6.8.3) may reduce
F without violating any of the active constraints. The possible existence of such a
search direction renders satisfaction of the Kuhn-Tucker conditions an insufficient
proof of local optimality. Sufficiency can only be established by considering higher
order derivatives of the objective function and constraints with respect to design vari-
ables (see Eqgs. (5.1.14) through (5.1.16) of Ref. 9). A formal check of the sufficiency
conditions is seldom performed in practice (and will not be performed in the present
study) since it involves the calculation of these higher order derivatives. Furthermore,
considering the theories upon which the optimization algorithms outlined in sections
6.2 and 6.3 are based, the chance that the algorithm could miss such a search direction
and converge prematurely are small. Hence, in the present study, candidate designs
satisfying the Kuhn-Tucker conditions will be considered to be local optima, with the
caveat that the check for sufficiency of the Kuhn-Tucker conditions as proof of local
optimality will not be made.

In practice, locating a design satisfying the Kuhn-Tucker conditions ezactly is
neither feasible nor necessary. Rather, satisfaction of these conditions to within some
tolerance is more appropriate. In the present study, satisfaction of the Kuhn-Tucker
conditions will be assumed if

aﬁ%*,};f\fg%
|7%:]

where ex; is a small specified tolerance.

~ < €KT; 1=12,...,n4 (6.8.4)
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Eq. (6.8.4) requires the calculation of the Lagrange multipliers, A;. In the present
study, a least squares approach is used. First, Eq. (6.8.1) is rewritten as

{G} - [N1{A}={0} (6.8.5)
where
{G}=VF (6.8.6)
and ,
ni; = a}"("_ i=1,2,....,n0 Jj=12,...,n. (6.8.7)

A residual vector, {u}, is defined such that
{u} = [N]{A} - {G}. (6.8.8)

Next, the square of the norm of {u}, [|{u}|?, is minimized by differentiating it with
respect to the A; and setting the result of each differentiation to zero. This minimiza-
tion yields

2[N]T [N]{A} - 2[N]T {G} = {0}. (6.8.9)

Hence,
{A} = (IN]T[N])HIN]T{G} (6.8.10)

Eq. (6.8.10) is the best solution in the least square sense; however, if the Kuhn-
Tucker conditions (Eq. (6.8.5)) are satisfied it should be the ezact solution. These
Lagrange multipliers indicate the cost of the constraints, g;, in terms of their affect on
the objective function, F. Small values of A; indicate that the constraint, g; associated
with that A; can be made more restrictive without a significant associated increase in
F.

When n, = 1 (only one constraint is active) then satisfaction of the Kuhn-Tucker
conditions is evaluated by considering the “cost-effectiveness™ with respect to a change
in each design variable given by

OF|8X;

50 /5%. =1,2,...,nd (6.8.11)
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where g is the active constraint. The Kuhn-Tucker conditions are satisfied when the
cost-effectiveness with respect to each design variable is the same. As in Eq. (6.8.4),
satisfaction of the Kuhn-Tucker conditions for the case of a single active constraint
in the present study will be assumed when the cost-effectiveness with respect to each

design variable is equal to within some tolerance, exT;.
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Chapter 7
RESULTS AND DISCUSSION

7.1 Buckling Analysis Case Study

During the development of the numerical analysis outlined in Chapters 4 and 5,
care was taken to insure that the results generated with the analysis of the present
study matched previously published results. Several case studies of the buckling of
imperfect, anisotropic unstiffened cylinders, the results of which were reported by
Booton®®, were performed using this analysis. The calculated buckling loads matched
the buckling loads reported by Booton precisely. Case studies of the buckling of an
orthotropic annular plate subjected to outer edge compression were also performed
with the analysis of the present study and compared to results published by Uthge-
nannt and Brand!2® and Ramaiah!3®. The buckling loads and mode shapes predicted
using the analysis of the present study matched those reported by these authors pre-
cisely. A more general case study of the buckling of an anisotropic annular plate (an
annular plate made of a composite laminate exhibiting bending-stretching coupling,
twisting-stretching coupling, bending-twisting coupling or some combination of these
couplings) subjected to outer edge compression was also performed using the analy-
sis of the present study. No previously published results of such a case study could be
found in the literature; hence, the buckling loads and mode shapes generated with the
analysis of the present study were compared with buckling loads and mode shapes gen-
erated using the STAGS% general purpose finite element program. Geometries and
orthotropic material properties used by Ramaiah*® were chosen for this study; further-
more, [+45/ —45]7 and [0/90]r laminates of this orthotropic material were considered.
Buckling loads and mode shapes generated with the analysis of the present study and
STAGS matched precisely.

Before proceeding with an optimal sizing study, it is worthwhile to first consider
a case study of the buckling behavior of a ring-stiffened cylinder subjected to vari-
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ous loadings and including imperfections of various magnitudes. The results of such

a case study can be used to help evaluate and understand the optimal ring-stiffened
cylinders generated with the sizing algorithm. For the cylindrical shell depicted in Fig.
7.1.1, buckling loads were generated for several combinations of axial compression
(P), torsion (T) and internal pressure (p). The corresponding unstiffened cylindrical
shell was also considered for comparison. In all cases, the cylinder length (L) was
60.0 in., the cylinder radius was 18.08 in. and the shell wall was assumed to be a [-
454/454/904/04]g laminate of graphite-epoxy prepreg tape having material properties
shown in Table 1.1.1 For' rﬁlerﬁnrg-sﬁﬂ'enedrca;é;,itrl;ﬂanée length (L) was 2.0 in.,
 the web height (Hy) was 5.0 in., and the flanges, webs and cylinder end tabs (having
length L /2) were all assumed to be made of a [45/0/45}y laminate of graphite-epoxy
woven cloth material having properties shown in Table 7.1.2.

The buckling interaction diagram for perfect and imperfect unstiffened shells with
and without pressure is shown in Fig. 7.1.2. For the two unpressurized cases, results
were also generated using the analysis code published in the report by Booton3. The
pressurized case was not analyzed using Booton’s code since it does not have the ca-
pability of computing buckling loads of cylinders loaded with constant pressure. The
results, identified as Ref. 35 in Fig. 7.1.2, match the corresponding results generated
using the present analysis very well. The arrows in Fig. 7.1.2 indicate percent changes
in the buckling load of proportional load cases having the same ratio of Nx/Nxy,
moving from the base of the arrow to the tip. As can be scen in the figure, the pres-
ence of an initial imperfection in the unpressurized shell having a maximum amplitude
equal to 25% of the total shell thickness (ts) results in a 54% drop in buckling load
under pure compression but only 2 maximum 3.5% drop under pure torsion. The addi-
tion of a 60.0 psi internal pressure to the imperfect shell then raises the torsional buck-
ling load a maximum of 110%; however, it raises the axial compression buckling load

of the imperfect shell by only 22%.
A similar buckling interaction diagram for the ring-stiffened shell for four cases
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of pressure and imperfection combinations is shown in Fig. 7.1.3. Three of the four
buckling loci in Fig. 7.1.3 correspond to those shown for the unstiffened shell in Fig.
7.1.2 (the pressurized, perfect case was added to provide a theoretical upper bound in-
teraction curve). For the unpressurized shell under pure torsion, the presence of the
imperfection causes at most a 1% decrease in the buckling load as compared to that of
the perfect structure; the addition of internal pressure raises the buckling load of the
imperfect structure by 48%. Under pure compression, imperfections account for a 68%
drop in buckling load compared to the perfect structure; addition of pressure then raises
the buckling load of the imperfect cylinder subjected to axial compression 77% above
the buckling load of the unpressurized, imperfect cylinder. Note that in the unstiff-
ened shell, internal pressure was more effective in raising the buckling load under pure
torsion than under pure compression while in the stiffened shell, the opposite is true.
“This difference in the effect of internal pressure on the buckling load of the unstiffened
cylinder versus the ring-stiffened cylinder can be explained using Figs. 7.1.4 through
7.1.6 which show the effect on the buckling load of adding ring stiffeners to the un-
stiffened shell. In these figures, proportional load cases with the same Nx /Nxy ratio
are linked by arrows pointing from the critical combination of Nx and Nxy at buck-
ling of the unstiffened shell to the corresponding combination for the stiffened shell.

For the perfect, unpressurized cylinders (Fig. 7.1.4) adding rings produced up to
an 85% increase in the torsional buckling load but virtually no increase in the axial
compression buckling load. Rings are much more effective in resisting the formation
of the long, skewed waveforms associated with torsional buckling than the shorter, less
skewed waveforms associated with axial compression buckling. For the unpressurized,
imperfect cylinder (Fig. 7.1.5), the results are nearly the same as the perfect cylinder
in the case of pure torsion; however, under pure compression the ring-stiffened cylin-
der buckles at a load below that of the corresponding unstiffened cylinder. This lower
buckling load can be explained by comparing plots of the buckling mode shapes of the
imperfect and perfect cylinders for a single proportional load case. This load case is
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labeled case “A” in Figs 7.1.4 through 7.1.6 and the mode shapes appear in Figs. 7.1.7
and 7.1.8. The buckling mode shapes of the cylindrical shell and ring webs show that
the ring webs of the imperfect cylinder (see Fig. 7.1.8) buckle while the cylindrical
shell does not buckle between the rings. On the other hand, the perfect cylinder (see
Fig. 7.1.7) buckles in the panel length between the rings while the ring webs do not
buckle. The outward radial Poisson expansion of the perfect, ring-stiffened cylinder re-
sults in the ring webs being stabilized by hoop tension loading; however, in the imper-
fect shell this is not necessarily true. Plots of prebuckling radial displacement of both
the perfect and imperfect unpressurized ring-stiffened cylinders depicted in Fig. 7.1.1
are shown in Fig. 7.1.9 for loading case “A”. For the perfect cylinder, the prebuckling
radial displacement is positive everywhere; however, the imperfect shell wall exhibits
regions where the net displacement is directed radially snward. The inward displace-
ment is due to the nonlinear coupling of the axial compression load with the geometric
imperfection where this imperfection is directed radially inward. Two of these regions
are adjacent to the area where the ring attaches to the shell. Hence, the ring webs be-
come loaded in hoop compression which is a destabilizing load. Since the webs are
long and thin (the most likely configuration predicted by an optimum sizing code based
on the analysis of the perfect structure), the hoop compression load causes them to
buckle prematurely. Referring to Figs. 7.1.4 and 7.1.5, note that for cases where the
addition of rings raises the buckling loads in both figures, the amount of increase ex-
hibited by the imperfect cylinder was smaller than that exhibited by the perfect cylin-
der, except, of course, when the cylinder is loaded in pure torsion and therefore lacks
any sensitivity to the axisymmetric imperfection considered in the present study. Fur-
thermore, referring to Figs. 7.1.5 and 7.1.6, note that for cases where the addition of
rings raises the buckling loads in both figures, the amount of increase exhibited by the
pressurized cylinder was substantially smaller than that exhibited by the unpressurized
cylinder. - o |
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7.2 Description of Optimal Sizing Case Studies and
Discussion of Algorithm Performance

Optimal design case studies were performed using the three cylindrical shell con-
figurations depicted in Fig. 7.2.1. The first configuration is an unstiffened cylinder, the
second configuration is a cylinder stiffened by two uniformly spaced steps in thickness
(or straps), and the final configuration is a cylinder stiffened by two uniformly spaced
“T.shaped rings. All three cylindrical shell configurations are 45.00 in. long and have
a 15.00 in. radius to the inner surface of the cylinder wall. Furthermore, the shell wall
in all three configurations is a [—45N,,/ + 45N, /90N,, /0N, ]s laminate of graphite-
epoxy prepreg tape having the assumed orthotropic material properties listed in Table
7.1.1. The straps are assumed to be of length L, and made of a [45N, /ON, /45N, ]T
laminate of graphite-epoxy cloth having the assumed orthotropic material properties
listed in Table 7.1.2. The flanges and the webs of the *“T~-shaped rings are assumed to
be fabricated from the same cloth material as the straps and are assumed to be lami-
nated in the same stacking sequence. These rings are assumed to have a flange length
of Ly, and a web radial depth of Hw. It is also assumed that both the strap stiffeners
and the “T” ring stiffeners are secondarily bonded to the shell wall using a 0.005 in.
thick layer of ductile adhesive having the isotropic material properties listed in Table
7.13. A descripﬁon of the six possible design variables, Nys, Ngo, No, Ny, Ly, and
Hyy are listed in Table 7.2.1 along with their specified upper and lower bounds and
their initial design values.

Several combinations of mechanical loading (axial compression and torsion), in-
ternal pressure, and initial imperfection amplitudes have been considered. These com-
binations are listed in Table 7.2.2, where “LD ID” identifies each combination, P (Nx)
is the axial loading, T (Nxvy) is the torsional (shear) loading, p is the internal pressure
loading, and y is the maximum geometric imperfection amplitude written as a fraction
of the total cylinder wall thickness ¢,. Note that as the total cylinder wall thickness

changes from one optimization iteration to the next, the absolute magnitude of the im-
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perfection amplitude changes as well. An imperfect, pure torsion case was not consid-
ered since the shell is not sensitive to the axisymmetric imperfection considered in the
present study in the absence of any axial compression loading. The magnitudes of the
loads were chosen to approximate, at 1/8 scale, loadings typical of those occurring in
various regions of the fuselage of a modem commercial transport aircraft. Note that
each of the three shell configurations considered in the case study was sized for a sub-
set of the cases listed in Table 7.2.2 rather than all 14 cases. Useful design rends can
be established without considering all 14 cases.

It should be reiterated at this point that the optimal designs generated in the pre-
sent study may be local optima rather than global optima. Hence, a possibility exists
that, for a given configuration illustrated in Fig. 7.2.1 and LD ID listed in Table 7.2.2,
it is possible that a design having a lower weight than the design reported as “opti-
mal” may exist. No attempt is made, in the present study, to locate the global optima.
Rather, from a point in the feasible domain of the design space (see Table 7.2.1 for the
initial values of the various design variables that characterize this point), a search is

performed in order to locate an adjacent local minimum.

Finding locally optimum designs that satisfied the Kuhn-Tucker conditions (see
section 6.8) was difficult. It was found that, in many cases, such designs could not
be located using NEWSUMT-A or the feasible directions algorithm in ADS alone;
rather, it was discovered that the best results were achieved using a combination of
these two algorithms. Design trends were blurred or hidden entirely until satisfaction
of the Kuhn-Tucker conditions was enforced by repeated application of the penalty
function and feasible directions algorithm. From an initially feasible design indicated
in Table 7.2.1, NEWSUMT-A was used first. If the design that NEWSUMT-A con-
verged to did not satisfy the Kuhn-Tucker conditions, then starting at this design, the
method of feasible directions algorithm in ADS was used. In many cases, ADS had to
be restarted two or three times before a design satisfying the Kuhn-Tucker conditions
was located. The rationale for this approach was that it is known that performance of
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the penalty function methods in the neighborhood of constraint boundaries can be poor
due 1o ill-conditioning of the pseudo-objective function (Eq. (6.2.1)), while the method
of feasible directions is written specifically for performing the search for a local op-
timum from designs lying directly on the constraint boundary. Performance of both
NEWSUMT-A and ADS was controlled using the maximum number of iterations (15)

convergence criterion, rather than the relative change in objective function criterion.

In many cases, NEWSUMT-A converged to a design satisfying the Kuhn-Tucker
conditions when the optimal design problem was characterized by cylinder wall layer
thickness design variables (Nys, Ngo, and Np) only. Even when more cylinder wall
layer thickness design variables were added to the problem, NEWSUMT-A still con-
verged to a design satisfying the Kuhn-Tucker conditions. However, in every case con-
sidered in the present study where the optimal design problem included both cylinder
wall layer thickness design variables along with ring sizing design variables (Ny, Ly,
and Hw) NEWSUMT-A converged to a non-optimal design requiring the subsequent
application of the method of feasible directions in ADS. Attempts were made to im-
prove the performance of the NEWSUMT-A algorithm by scaling the design variables
and the constraints (see pages 97-100 and 136-137 of Ref. 11), to no avail. The ne-
cessity of having to restart the method of feasible directions periodically is thought to
be related to the way the design variables, objective function, and the constraints are
scaled in ADS. Scaling is performed only at the beginning of the first iteration of the
method of feasible directions. Periodic re-scaling of the design variables, objective
function, and constraints during iterations of the method of feasible directions subse-
quent to the first iteration would no doubt improve the algorithm. In any case, with
this combination of NEWSUMT-A and ADS, the optimal designs to be reported in the
section 7.3 were generated. All of these results satisfy the Kuhn-Tucker conditions to
within a tolerance, ex, (see Eq. (6.8.4)), of 7%. In certain cases, satisfaction of the
Kuhn-Tucker conditions was forced to be tighter than 7%; however, the changes in the
optimal values design variables resulting from this tighter tolerance were insignificant.
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In order to speed the performance of the optimal sizing algorithm the stress con-
straints, described in section 6.5, were not included in the constraint set. It was as-
sumed that for the loadings listed in Table 7.2.2, the stress constraints would not be
critical in comparison to the stability constraints. Results of a thorough stress analysis
of the optimal designs, to be reported in section 7.4, indicate that including only sta-
bility and side constraints in the constraint set was a reasonable approach. Generally,
considering buckling modes associated with 7 or 8 different circumferential wave num-
bers in the stability constraint set was sufficient to allow for the possible occurrence of
mode switching and mode coalescence. Close to the optimum, the number of different
buckling modes considered in the constraint set could be reduced to as few as 3 or 4.

The finite element model used in the stability analysis contains elements with a
maximum length of 1.0 in. in which the in-plane buckling displacements are interpo-
lated quadratically. A minimum of two elements was used in the ring flanges and a
minimum of three elements was used in the ring webs. This choice was based on a
convergence study of the buckling loads of several cylinders, both stiffened and unstiff-
ened, and several annular plates. Convergence of the finite element analysis for buck-
ling typically occurred when the number of elements in the finite element mesh was
sufficient to accurately represent the critical buckling mode shape of the ring-stiffened
cylinder. Since the prebuckling equlibrium equations governing the response in each
structural segment are solved in closed form, the effects of a finite element mesh on
the prebuckling load distribution did not have to be considered. Hence, a detailed mesh
at the boundaries and where the shell meets a ring flange was not needed. For the
45.00 in. long, 15.00 in. radius cylinder with rings having Ly and Hw dimensions
shown in Table 7.2.1, the finite element meshes used in the present study are reason-
able.
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7.3 Optimal Design Case Study Results

The results of the optimal design studies of the unstiffened, strap-stiffened, and
“T” ring-stiffened cylinders appear in Tables 7.3.1, 7.3.2, and 7.3.3 respectively. In
these tables, LD ID refers to the cases listed in Table 7.2.2, ¢, is the optimal total
thickness of the cylinder wall of the optimal shell, % + 45, %90, and %0 represent the
optimal distributions of the thicknesses of layers having +45°, 90°, and 0° fiber ori-
entation angles, respectively, as a percentage of t,, NORM. WT. is the optimal weight
of the shell divided by the weight of the corresponding perfect (u = 0), unpressurized
(p = 0) optimal unstiffened cylinder (Table 7.3.1, LD ID 1, 4, 7, 10, and 13), t; is the
optimal total thickness of the strap in Table 7.3.2 or the "T" ring flange in Table 7.3.3,
Lp is the optimal length of the strap in Table 7.3.2 or the "T" ring flange in Table
7.3.3, Hy is the optimal radial depth of the web of the "T" ring in Table 7.3.3,and %
RING WT. is the total weight of the rings expressed as a percent of the weight of the
optimal ring-stiffened cylinder. In Tables 7.3.4, 7.3.5, and 7.3.6, the active constraints
and the Lagrange multipliers corresponding to these active constraints associated with
the optimal designs shown in Tables 7.3.1, 7.3.2, and 7.3.3 are listed. Under the head-
ing “Stability Constraints”, the circumferential wave numbers of the buckling mode
shapes associated with the active stability constraints are presented. While lower bound
side constraints, X', were active in several optimal designs, in no case was an active
upper bound side constraint, X*, observed. Note that in some cases (Table 7.3.5, LD
ID 8, 10, and 14) stability constraints associated with more than one circumferential
wave number were active at the final optimal design. Also note the magnitudes of the
Lagrange multipliers associated with the active stability constraints. The small values
reflects the observation, noted in section 6.6.2, that the gradients of the stability con-
straints become very large as these constraints become active and that generous “buffer
zones” around these constraints (more generous, perhaps, than those used in the present
study) can be used.

Before proceeding to a critical evaluation of the optimal designs, an example of

141



the existence of more than one local minima in the design space is presented. This

is the optimal unstiffened cylinder design associated with LD ID 13 in Table 7.3.1.
Both of these designs satisfy the Kuhn-Tucker conditions; furthermore, as an additional
check, stability analyses were performed on new designs located at 10 equally spaced
points along the vector connecting the two optimal designs within the design space. At
each one of these design points, except, of course, the end points, at least one stability
constraint was violated. This indicates that the two designs are, indeed, local optima.
Note, from Table 7.3.1, that the two designs are very different; however, the weights
of these designs (both normalized with respect to the weight of the lighter design) dif-
fer by only 2%. This reflects a feature of the problem that was observed many times
during the course of the search for the optimal designs - that many non-optimal de-
signs (non-optimal meaning designs that did not satisfy the Kuhn-Tucker conditions)
that have weights within a few (5) percent of the weight of the true optimal design ex-
ist in the design space. This characteristic of the design space, sometimes referred to
as “flatness”, indicates that it is possible to change the optimal design to a non-optimal
design, perhaps due to some requirement not considered in the present study, without
paying a substantial weight penalty.

7.3.1 Unstiffened Cylinder Case Studies

The optimal thickness distributions of the +45°, 90°, and 0° layers of the unstiff-
ened cylinders, listed in Table 7.3.1, are plotted in Figs. 7.3.1 through 7.3.3 as percent
of the total shell wall thickness ¢, versus LD ID number. No results are listed for LD
ID 14 since the straps in optimal strap-stiffened design associated with this LD ID (Ta-
ble 7.3.2) virtually vanished. The numbers in parentheses in Figs. 7.3.1 through 7.3.3
indicate the ratio of torsional (shear) loading (Nxy) to axial loading (Nx). Note, from
Table 7.2.2, that this relative amount of torsional (shear) loading to axial compressive
loading, also denoted by the ratio Nxy : N, increases with increasing value of the
LD ID appearing along the horizontal axis of each of the three figures (7.3.1 through
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7.3.3). For the perfect, unpressurized cylinders addressed in Fig. 7.3.1, the optimal de-
signs are made up mostly of +45° and 0° layers in all cases except LD ID 1 - pure ax-
ial compression. However, as illustrated in Fig. 7.3.2, when the initial imperfection is
accounted for the thickness of the 90° layer is substantially greater than the 90° layer
thickness in the corresponding perfect cylinder optimal design. As shown in Fig. 7.3.3,
the optimal designs in the imperfect, pressurized case also have substantially thicker
90° layers than the corresponding perfect, unpressurized optimal cylinders and almost
no 0° layers. Hence, the addition of internal pressure to the imperfect cylinder does
not “negate” the effect of the imperfections on the optimal designs. Also, while the
sizing of the perfect shell indicates striking differences in the optimal design of cylin-
ders subjected to pure axial compression compared to those subjected to some amount
of torsional loading, these differences are much less striking when initial imperfections
are accounted for. For combined axial compression and torsional loading (LD ID4,7
and 10 in Fig. 7.3.1, LD ID 5, 8 and 11 in Fig. 7.3.2, and LD ID 6, 9 and 12 in Fig.
7.3.3,), the inclusion of initial imperfections results in the optimal cylinder appearing
less like the optimal design of the cylinder subjected to pure torsion and more like that

of a cylinder subjected to pure compression.

Fig. 7.3.4 depicts the effects of imperfections and internal pressurization on the
optimal weights of the unstiffened cylinders. Only the LD ID numbers associated with
the perfect, unpressurized configuration is indicated on the horizontal axis of this fig-
ure. For example, LD ID 1 identifies the perfect, unpressurized cylinder loaded in pure
compression; however, the optimal weights of the imperfect,unpressurized (LD ID 2),
and imperfect, pressurized (LD ID 3) cylinders are also identified by LD ID 1 since
the mechanical loading (axial compreésion) is the same for LD ID 1,2, and 3. For
each value of LD ID, the optimal weights are normalized with respect to the optimal
weight of the perfect, unpressurized cylinder associated with that value of LD ID. In
all of the cases shown, the optimal weights (and thus the optimal total cylinder wall
thicknesses) of the imperfect, unpressurized cylinders are substantially (10% or more)
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greater than the optimal weight of the corresponding perfect, unpressurized cylinder.
This weight difference is a function of the relative amount of torsional to axial loading
(Nxy : Nx) that the cylinder is subjected to. The higher this ratio, the lower the dif-
ference. For example, when Nxy : Nx is 0 (LD ID 1) the difference is almost 50%;
however, when Nxy : Nx is 1:1, the difference is 10%. This observation quantifies,
in terms of optimal weight, what the buckling interaction curve of Fig. 7.1.2 quantifies
in terms of buckling loads - that the imperfection sensitivity of the cylinder increases
as the ratio of axial compression loading to torsional loading increases. The effects of
pressurization on the optimal designs of the imperfect cylinders, also depicted in Fig.
7.3.4, will be discussed after a brief explanation of the observed effects of imperfec-
tions on the optimal designs.

The facts that the inclusion of the initial geometric imperfection results in both
an increase in the total cylinder wall thickness and a substantial increase in the percent
thickness of the 90° layers can be explained by considering the particular solution (Eq.
(4.1.32)) to the equation goveming the prebuckling radial displacement of the cylinder
wall (Eq. (4.1.27)). The contribution to this particular solution from the initial imper-
fection is

Tp(X) = AcoswX (7.3.1.1)

where

-
—-_ pw®N x
A= — i —. (7.3.1.2)

For the balanced, symmetric cylinder wall laminate considered in the present study,
replacing the terms in Eq. (7.3.1.2) with the dimensional terms listed in Table 1 yields

uNx L2

I e
Nx L? +2,/D;, /AL, 2 t,

(7.3.1.3)

or
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To reduce the radial shell wall deformations induced by the initial imperfection in the
presence of the axial load, the denominator of Eq. (7.3.1.4) should be as large as pos-
sible. This can be accomplished by increasing the axial bending stiffness, D1, of the
cylinder wall, the hoop membrane stiffness, Aj;, of the cylinder wall, or a combination
of the two. This is why the optimal designs of the imperfect shells are thicker than the
corresponding perfect designs and that most of this additional thickness is made up of

- 90° layers. The increase in the size of the 90° layer raises the hoop membrane stiff-
ness and moves the £45° layers further away from the middle surface of the cylinder
wall ,
A final trend indicated in Fig. 7.3.4 is that the optimal weights of the pressurized,
imperfect cylinders are substantially smaller than the optimal weights of corresponding
unpressurized, imperfect cylinder. For LD ID 10 (Nxy : Nx = 1 : 1), the optimal
weight of the pressurized, imperfect cylinder is 28% smaller than the unpressurized
perfect cylinder; however, for LD ID 1 (Nxy : Nx = 0) the optimal weight of the
imperfect, pressurized cylinder is only 10% smaller than the optimal weight of the un-
pressurized, imperfect cylinder. This information again quantifies, in terms of optimal
weight, what is quantified in terms of buckling loads in the buckling interaction curves
of Fig. 7.1.2 - that the added capability of the cylinder to resist buckling due to the

addition of internal pressure increases with an increase in the ratio Nxy : Nx.

7.3.2 Ring-Stiffened Cylinder Case Study
7.3.2.1 Discussion of Optimal Design Detail Trends

The optimal sizing results for the strap-stiffened cylinders, reported in Table 7.3.2,
are plotted in Figs. 7.3.5 through 7.3.7. The\ optimal sizing results for the “T" ring-
stiffened cylinders, reported in Table 7.3.3, are plotted in Figs. 7.3.8 through 7.3.10.
The additional ring weight parameter plotted in Figs. 7.3.5 through 7.3.7 and Figs.
7.3.8 through 7.3.10 indicates the weight of the rings (straps or “T”s) of the optimal
designs as a percentage of the total weight of the optimal ring-stiffened cylinder de-

145



sign.

Figs. 7.3.5 through 7.3.7 and Figs. 7.3.8 through 7.3.10 indicate that the trends in
the distribution of fhe cylinder wall layers thicknesses are similar to those trends ob-
served in the case study of the unstiffened cylinders that was discussed in detail in sec-
tion 7.3.1. The only measurable difference between the unstiffened and ring-stiffened
cylinder wall layer thickness distributions is that the optimal ring-stiffened cylinders
have a larger percentage of +45° layers than the corresponding optimal unstiffened
cylinders do.

As shown in Table 7.3.2, in every design where a ring of substantial stiffness is
called for, the optimal strap design has a length of the lower bound value of 1.00 in.
and, as shown in Table 7.3.3, the optimal “T” ring design is one with a thin narrow
flange (generally a flange with a lower bound length of 1.00 in.) and a thin deep web.
A plot of the total ring weights of the optimal strap-stiffened and “T” ring-stiffened
cylinders as a percent of the total weight of the optimal ring-stiffened cylinder, shown
in Fig. 7.3.11, illustrates that for all but LD ID 9, the optimal strap designs are many
times heavier than the 7oimmal “ nng demgns All of these observations indicate that
the rmgs are s1zed for opt.unal bendmg snffness Tlns occurs because the critical buck-
ling mode shapes of the cyhndncal shell, the formauon of which the rings must be
designed to resist, are generally asymmetric. Such a buckled configuration, should it
occur, would result in substantial bending of the rings.

Another issue that can be addressed with the results of these optimal sizing case
studies is whether or not the presence of initial imperfections in the cylinder wall im-
pact the designs of the rings in the optimal cylinder significantly. Looking at Fig. 7.
3. 8, the plot of the optimal designs for the perfect, unpressurized, “T” ring-stiffened
cylinders, it is clear that the percent ring weight increases with increasing Nxy : Nx;
however, this trend is not so clear in Fig. 7.3.9, the plot of optimal designs of the cor-
responding imperfect, unpressurized cylinders. To see why this is so, the ring weight
percentages in the optimal “T” ring-stiffened cylinders sized for three different val-

146



ues of Nxy : Nx are plotted in Fig. 7.3.12 for both the perfect, unpressurized and
imperfect, unpressurized configurations. It is clear from this figure that the presence
of imperfections in the cylinder wall can result in significant ring weight increases in
the optimal cylinders when compared to designs where imperfections are ignored. For
example, for a ratio Nxy : Nx of 1:4, the weight of the “T” rings of the optimal per-
fect, unpressurized cylinder is only 0.500% the total weight of the structure while the
weight of the “T” rings of the optimal imperfect, unpressurized cylinder is 1.3% of the
total weight of the optimal structure - an increase of 160%! It is postulated that this in-
crease in the percent ring weights in the optimal imperfect cylinders is most likely due
to the ability of the imperfections to trigger premature buckling of the ring webs. This
ability is illustrated in Figs. 7.1.7 through 7.1.9 and discussed in section 7.1.

7.3.2.2 Discussion of Optimal Weight Trends

In Figs. 7.3.13 and 7.3.14, the optimal weights of the ring-stiffened cylinders have
been normalized with respect to the optimal weights of the comresponding perfect, un-
pressurized, unstiffened cylinders. The effects of imperfections and pressurization on
the optimal total weights of the ring-stiffened cylinders, illustrated in Figs. 7.3.13 and
7.3.14, are the same as the effects of these parameters on the optimal total weights of
the corresponding unstiffened cylinders illustrated in Fig. 734.

The buckling interaction curves of Figs. 7.1.4 through 7.1.6 indicate that the ad-
dition of rings can increase the capability of an unstiffened cylinder to resist buckling
substantially when some amount of torsional loading is present. This phenomenon is
quantified in terms of the weight saved in the optimal designs of the cylinder as shown
in Fig. 7.3.15. In this figure, the percent difference in weight between the optimal
strap-stiffened or “T™ ring-stiffened cylinders and the corresponding optimal unstiffened
cylinders is plotted for various values of LD ID. As to be expected from a considera-
tion of Fig. 7.3.11, the “T” ring-stiffened cylinders are substantially more efficient than
the corresponding strap-stiffened cylinders. Furthermore, the addition of ring-stiffening
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yields significant weight savings even when the ratio of torsional load to axial load

is small. For example, LD ID 5 corresponds to an imperfect cylinder having a ratio
Nxy : Nx of only 1:4; however, the addition of rings to the unstiffened cylindri-

cal shell subjected to this loading still produces a 6% savings in weight. Of course,

as shown in Fig. 7.3.15, the weight savings are many times greater in cases where the
cylinder is loaded by more substantial amounts of torsion. This reflects the observation
made about Figs. 7.1.4 through 7.1.6 in section 7.1 - that the effect of adding rings to
the unstiffened cylinder on the buckling resistance of the structure increases with an in-
crease in the ratio Nxy : Nx. For example, adding “T"” ring-stiffeners to the imperfect
cylinder loaded by torsion and axial compression in the ratio Nxy : Nx of 1:1 (LD ID
11) yields a weight savings of 17%!

Two other observations made in section 7.1 conceming Figs. 7.1.4 through 7.1.6
were that the net increases in the buckling loads that occurred when rings were added
to the perfect, unpressurized, unstiffened cylinder were reduced when imperfections
were accounted for in the analysis, and that these net increases were drastically reduced
when the imperfect cylinder was pressurized. This is reflected in the overall drop in
the amount by which the optimal weight of the ring-stiffened cylinder differs from
the weight of the corresponding optimal unstiffened cylinder, as is illustrated in Fig.
7.3.15 when a weight savings associated with a perfect, unpressurized configuration
(LD ID 4,7, and 10) is compared to the weight savings associated with an imperfect-
unpressurized (LD ID 5,8, and 11) or imperfect-pressurized configuration (LD ID 6 or
9). This drop in weight savings for three “T” ring-stiffened cases is more clearly illus-
trated in Fig. 7.3.16. For example, LD ID 7 corresponds to a perfect, unpressurized
cylinder subjected to axial compression and torsional loading in the ratio Nxy : Nx
of 1:2. For this LD ID, adding the two “T” ring stiffeners produces an optimal weight
savings of 16%; however, in the corresponding imperfect case (LD ID 8), the weight
savings is reduced to 11%. When the internal pressure is included (LD ID 9) the total
weight savings due to the addition of the “T” ring stiffeners is only about 5%. The
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lack of effect the rings have in increasing the buckling resistance of the imperfect,
pressurized cylinders is also demonstrated by comparing the percent ring weights of
the optimal imperfect, pressurized cylinders (Fig. 7.3.7 for the strap-stiffened cylinders
and Fig. 7.3.10 for the “T” ring-stiffened cylinders) to the percent ring weights of the
optimal perfect and imperfect, unpressurized cylinders (Figs. 7.3.5 and 7.3.6 for the
strap-stiffened cylinders and Figs. 7.3.8 and 7.3.9 for the “T” ring-stiffened cylinders).
The percent ring weights of the optimal imperfect, pressurized cylinders are substan-
tially smaller in each case than the percent ring weights of the corresponding perfect
and imperfect unpressurized cylinders.
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7.4 Stress Constraints

In this section, the stress constraints described in section 6.5 are addressed. Under
the assumption that the stability constraints described in section 6.6 would be critical
for design, the stress constraints were ignored during the optimal sizing of the cylinders
described in section 7.3. It is appropriate at this point, therefore, to perform a stress
analysis of the optimal cylinders in order to check the validity of the assumption of
stability constraint criticality. This stress analysis is based on a lamina stress analysis
of the cylinder skin (see Appendix A), a lamina stress analysis of the ring webs (in-
terlaminar stresses ignored), and an analysis of the through-the-thickness normal (or
“peel”) stresses and transverse shear stresses in the adhesive used to bond the straps
(or “T” rings) to the cylinder wall. Initial geometric imperfections in the cylinder wall
are ignored for stress analysis purposes. Imperfections are ignored because the initial
imperfection shape used in the present study, Eq. (4.1.25), was chosen because of the
strong coupling demonstrated to exist between this imperfection and asymmetric buck-
ling mode shapes, not necessarily because of its true representation of real imperfection
distributions. Lamina stresses are calculated at the extreme surfaces of each layer of
the cylinder skin or ring webs at stations spaced 0.10 in. apart. Adhesive stresses are
calculated at stations approximately 0.05 in. apart along the length of the strap or the
flange connecting the “T" ring to the cylinder wall. At each station, the stress con-
straints (Eqs. (6.5.1) through (6.5.6)) are evaluated as is appropriate. At the ring/skin
interface, the interlaminar failure constraints of Egs. (6.5.5) and (6.5.6) are evaluated
with respect to the allowable stresses of the adhesive, listed in Table 7.1.3 along with
the rest of the assumed material properties of this adhesive, and the allowable stresses
of the inner-most cylinder skin layer of graphite-epoxy tape, listed in Table 7.1.1, to
which the adhesive is applied. Before proceeding to a discussion of the results of the
stteSé aﬁysw of the opnmalcyh}xcierd;smns a brief discussion of the nature of the
stresses in the ring flange/cylinder skin interface is presented.
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7.4.1 Ring Flange/Cylinder Skin Interface Stresses

In order to investigate the nature of the stresses in the ring flange/cylinder skin
interface, a “T” ring-stiffened cylinder having the same configuration as the one used
as the initial design for the “T” ring-stiffened cylinder optimal sizing case studies de-
scribed in section 7.3.2 is considered. This cylinder is 45.0 in. long, has an inner sur-
face radius of 15.00 in., and is made of a [—455/455/905/0s]s laminate of graphite-
epoxy tape having the material properties listed in Table 7.1.1. It is stiffened by two
equally spaced rings as shown in Fig. 7.2.1. Two different ring configurations are
considered. The first configuration has Ly = 2.0 in., Hw = 3.0 in, and Ny = 1
(t; = 0.042 in.) (see Table 7.2.1). This first configuration was chosen to approximate
a ring having a long, thin attachment flange. The second configuration has Ly = 1.0
in., Hw = 3.0 in., and Ny = 4 (t; = 0.168 in.). This second configuration was chosen
to approximate a ring having a short, thick attachment flange. The ring-stiffened shell
is assumed to be subjected to an axial compression load of 250000. lbs., a torsional
load of 1875000. in.-lbs., and an internal pressure load of 70.0 psi.

The resulting distributions of adhesive through-the-thickness normal (or “peel”)
stresses, dzz = 033, and transverse shear stresses, 7xz = T13 and ryz = T3 (see
Fig.4.4.1) for the two ring configurations are plotted in Figs. 7.4.1,74.2, and 7.4.3 re-
spectively for one of the ring stiffeners. The web of this ring is located at z = -7.50
in., the two edges of the long flange are located at z = -8.50 in. and z = -6.50 in,,
and the two edges of the short flange are located at z = -8.00 in. and z = -7.00 in.
In their analysis of skin/stiffener interface stresses in composite stiffened panels, Wang
and Biggers®® demonstrated that at the free edges of the flanges that attach the stiffener
to the panel skin, these adhesive stresses peak sharply in a narow region adjacent to
the free edge of the flange. Figs. 7.4.1 through 7.4.3 demonstrate that this is also true
of the stresses in the ring flange/cylinder skin interface region. The peel stresses (Fig.
7.4.1) also peak in a region directly below the point where the ring web and flange are
joined, as is to be expected since the stiff web restrains the flange/skin combination
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from outward radial expansion under the action of the internal pressure. There is a sig-
nificant difference in the distribution of the through-the-thickness normal stress beneath
the long, thin ring flange and the short, thick flange. The long, thin flange only tends
to separate from the cylinder skin directly beneath the ring web, while the short, thick
flange shows a very strong tendency to separate from the cyhnder skin in a narrow
region near the free edge of the flange. These observations are consistent with those

reported by Wang and Biggers®® for the flat stiffened panels.

The 7xz transverse shear stress distributions illustrated in Fig. 7.4.2 also show
peak values occurring in a narrow region near the free edge of the flange. Actually,
rx z beneath the free edge of the flange should be zero; however, the simplified treat-
ment of the adhesive as a set of shear springs in the present study does not allow for
enforcement of the condition xz = 0 at this edge. In their study of tubular lap joints,
Adams and Peppiatt®® used a more detailed model of the adhesive to show that the
© transverse shear stress corresponding to 7xz in the present study actually peaks very
close to the edge of the adhesive then drops to zero at the edge very suddenly. Hence,
while the simplified adhesive model used in the present study does not allow for en-
forcement of Txz = 0 at the edge of the adhesive, it does appear to allow for reason-
able prediction of this adhesive stress up to, but not including, this edge.

As shown in Fig. 7.4.2, the stress state adjacent to the free edge of the long, thin
ﬂangé 1sr§ubstant1ally more severe than the stress state adjacent to the free edge of the
short, thick ﬂa’ngrc.f This result is consistent with the observation made by Wang and
Biggers®? that to minimize the maximum value of this 7xz shear stress, a2 minimum
practical flange length should be used. The Ty z transverse shear distributions appear
in Fig. 7.4.3. Once again, the peak values occur in a narrow region adjacent to the
free edge of the flange. The curves plotted in Fig 7.4.3 show that the difference in
the distributions of the Ty z transverse shear stress beneath the long, thin flange and
the short, thick flange is not as pronounced as the corresponding difference in the dis-
tributions of the Txz transverse shear stress. Furthermore, the peak stress at the free
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edge of the short, thick flange is about 50% higher than the peak stress at the free edge
of the long, thin flange. This is also consistent with the observations of Wang and
Biggers®®. They showed that the 7y z stress distribution is not sensitive to the flange
length and that the peak Ty z transverse shear stress increases with along with an in-
crease in flange thickness. The conflicting effects of the various ring flange parameters
on the various adhesive stresses indicate that a ring flange design may exist producing

optimal ring/skin joint strength.
7.4.2 Results of Stress Analyses of Optimal Cylinders

The results of the stress analyses of the optimal strap-stiffened and *“T~ ring-stf-
fened cylinders are listed in Tables 7.4.1 and 7.4.2 respectively. The optimal cylinder
design is identified by LD ID in the first column. Stress analyses were not performed
on the optimal unstiffened cylinders since the optimal layer thickness distributions of
the corresponding optimal ring-stiffened cylinders were very similar and the cylinder
wall total thicknesses of the ring-stiffened cylinders were all smaller than the corre-
sponding unstiffened cylinders. In Tables 7.4.1 and 7.4.2, the minimum values of the
constraints associated with a cylinder skin lamina fiber direction failure (Eqgs. (6.5.1)
and (6.5.2)), an in-plane lamina matrix cracking failure (Egs. (6.5.3) and (6.5.4)), and
an interlaminar-type failure (Eqs. (6.5.5) and (6.5.6)) in the ring/skin interface region
are listed. Also listed are the locations of the minimum values of the cylinder skin
lamina fiber direction and in-plane matrix cracking stress constraints in terms of the
normalized meridional coordinaté X (X = 20.500 at the extreme ends of the cylin-
der) and the cylinder wall laminate layer where these minimum constraint values oc-
cur. A “T” is used to indicate that an in-plane tension failure constraint (Eq. (6.5.1) or
(6.5.3)) is critical while a ‘C” is used to indicate that an in-plane compression failure
constraint (Eq. (6.5.2) or (6.5.4)) is critical. The letters “AT" indicate that an adhe-
sive tension failure constraint (Eq. (6.5.5)) is critical. The letters “AC” indicate that

an adhesive compression failure constraint (Eq. (6.5.6)) is critical. Stresses in the ring
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webs did not produce constraint values smaller than the values listed in Table 7.4.2 in
any case. Furthermore, the interlaminar stresses in the cylinder skin calculated using
the method outlined in section A.2 of Appendix A were small in every case consid-
ered. Interlaminar.shear stresses, calculated using the method of section A.2, were less
than 2000 psi in each case; furthermore, the maximum calculated through-the-thickness
tensile normal stress, calculated using this method, was 100 psi.

In Tables 7.4.1 and 7.4.2, positive minimum constraint values indicate stress con-
straint satisfaction; negative constraint values indicate stress constraint violation. The
dashes indicate constraints equal to 1.0 for all practical purposes. In all but one case
(LD ID 14 of the optimal strap-stiffened cylinder designs), the optimal cylinder de-
signs lie well within the feasible domain defined by the stress constraints alone. Fur-
thermore, except for LD ID 13, critical constraint values typically occur either at the
clamped ends of the cylinder or in the cylinder wall bending boundary layer adjacent
to these ends. The cylinders corresponding to LD ID 13 are loaded in pure torsion; the
minimum constraint values occur in the cylinder skin at X = 0.178. This is adjacent to

the edge of a strap or ring flange.

The large positive values of the stress constraints indicate that the assumption of
stability constraint criticélity was reasonable in every case except the strap-stiffened
cylinder associated with LD ID 14. In this case, which is for the cylinder subjected to
torsion and internal pressure without axial loading, an in-plane matrix cracking con-
straint at the clamped end of the cylinder is violated. All other stress constraint values
are large positive numbers. In his study of pressurized cylindrical panels, Boitnott>,
observed dunng hlséxpenments that he could not detect any damage in the graphite-
epoxy panels until the pressures reached values substantially higher than those pre-
dicted to produce in-plane matrix cracking failures. Hence, a comparison of the op-
timal designs of the strap-stiffened cylinders in which in-plane matrix cracking con-
straints are satisfied with those in which these constraints are violated, with all other
constramts saﬁ'sﬁed, is of some interest. The strap-stiffened cylinder was re-sized for
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LD ID 14 with additional constraints added to prevent violation of the in-plane ma-
trix cracking constraints at the clamped end. The new optimal design, satisfying all
stress constraints, and the design from Table 7.3.2, in which the in-plane matrix crack-

ing stress constraint is violated, appear below.

Design Variable Matrix Cracking No Matrix Cracking
t, 0.05053 in. 0.07815 in.

% +45 97.269 64.985

% 90 ' 0974 35.002

% 0 1.757 0.013

iy 0.0059 in. 0.0000 in.

Ly 1.000 in. 1.000 in.

Buckling A.- 1.000 1.32

Norm. Wt. : 1.000 1.469

Note that the weights of the optimal designs are normalized with respect to the weight
of the optimal strap-stiffened cylinder design violating the in-plane matrix cracking
constraint (the lower weight design). Also note that the stability constraint for the de-
sign satisfying the in-plane matrix cracking stress constraint is not active. To satisfy
the in-plane matrix cracking constraint, a 90° layer that is significantly larger than the
90° layer in the optimal design where this constraint is violated is needed. Further-
more, it is readily appareht that a significant penalty in optimal weight is associated

with enforcing the satisfaction of the in-plane matrix cracking constraint in this case.
7.4.3 Internal Pressure To Failure

The final portion of the present study involves an investigation of the stress fail-
ures occurring in the optimal ring-stiffened cylinder design of Tables 7.3.2 and 7.3.3
due to the application of their design mechanical loads (axial compression and torsion)
along with internal pressures that are higher than those for which the cylinder was
sized. This investigation is performed by predicting, for each optimal strap-stiffened
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and “T ring-stiffened cylinder, the value of internal pressure at which a stress failure
is first likely to occur. The results of this study are listed in Table 7.4.3 for the optimal
strap-stiffened cylinders and in Table 7.4.4 for the optimal T~ ring-stiffened cylinders.
The form of these tables is the same as the form of Tables 7.4.1 and 7.4.2, except the
constraint values listed are for the cylinders subjected to the mechanical loads associ-
ated with the LD ID indicated in the first column and the internal pressure to failure
indicated in the second column. Furthermore, the letters “CT” indicate that an inter-
laminar tension failure constraint (Eq. (6.5.5)), at the innermost layer of the cylinder
wall to which the adhesive bond is applied, is critical.

Wang and Biggers®® mention that the stresses in the flange/skin interface region
of flat stiffened graphite-epoxy panels are particularly sensitive to the laminate stack-
ing sequence of the stiffener flange. Hence, for the three cases in Table 7.4.3 where the
indicated first failure in the optimal strap-stiffened cylinders is predicted to occur due
to high adhesive through-the-thickness normal and transverse shear stresses (LD ID 8,
10, and 13) a new pressure to failure was calculated for the shell having straps with
the stacking sequence [On, /45n, /45N, ]T instead of [45n, /ON, /45N, |T. Note that
the new strap laminate is unsymmetric. A check of the buckling loads of the optimal
cylinders having straps with the new stacking sequence indicated that the effect of this
change on the buckling load was negligible. In all three cases, the internal pressure
to failure of the cylinders with the unsymmetrically laminated straps increased. These
increases are illustrated in Fig. 7.4.4. The failure pressures in this figure are normal-
ized with respect to the failure pressure of the cylinders with symmetrically laminated
straps. Note that for LD ID 8 and 10 the internal pressures to failure of the cylinders
with the unsymmetrically laminated straps are 120% and 40% higher, respectively,
than the internal pressures to failure of the cylinders with the symmetrically laminated
straps. The increase in failure pressure of the cylinder sized for torsional mechanical
loading only (LD ID 13) is not as high as the cylinders sized for both axial compres-
sion and torsional loading. The failure pressures of the cylinders with the unsymmet-
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rically laminated straps are higher since the edges of the straps curl into the cylinder
skin as the strap stretches in the hoop direction due to the bending-stretching coupling
exhibited by the unsymmetric laminate. This curling forces the flange to conform more
with the cylinder skin as it tends to separate from the strap due to local bending under
the combined action of axial compression and internal pressure loading. This lowers
the peel stress in the adhesive substantially.

For cases in Tables 7.4.3 and 7.4.4 where the first predicted failure was due to
in-plane matrix cracking, internal pressures to failure were also calculated where this
failure mode was iénored. The results of this study for the strap-stiffened cylinders
appear in Fig. 7.4.5 and for the “T" ring-stiffened cylinders in Fig. 7.4.6. The substan-
tial increase in failure pressure illustrated in all cases, along with the result discussed
in section 7.4.2 illustrating the potential weight penalty associated with satisfying in-
plane matrix cracking strength constraints in stress constraint-crtical optimal designs,
indicates that serious study of the effects of in-plane matrix cracking on the failure of

pressurized structure is warranted.
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Chapter 8
CONCLUDING REMARKS AND RECOMMENDATIONS FOR FURTHER WORK

8.1 Concluding Remarks

A structural analysis has been developed to predict prebuckling deformations, pre-
buckling stresses and buckling loads of anisotropic cylinders with secondarily bonded
ring stiffeners, subjected to axial compression, torsion, and internal pressure. The struc-
ture is modeled as a branched shell. A nonlinear axisymmetric prebuckling equlibrium
state is assumed which is amenable to exact solution within each branch. A simple
analytical model, characterized by the approximate treatment of the adhesive layer as
a series of uniformly distributed shear and extensional elastic springs, is employed to
predict prebuckling stresses in the ring flange/ cylinder skin interface region. Stress re-
sultants and stress couples generated using the exact solutions are applied as boundary
conditions to this model. Buckling displacements are represented by a Fourier series
in the circumferential coordinate and the finite element method in the cylindrical shell
axial coordinate or ring web radial coordinate.

Several case studies were conducted using this structural analysis in order to as-
sess the effects of imperfections, pressurization, and ring stiffening on the buckling
loads and mode shapes of a cylindrical shell. It was demonstrated that a nonlinear pre-
buckling analysis is needed to accurately predict buckling loads and capture the buck-
ling mode shapes of ring-stiffened cylindrical shells. It was found that the effect of
rings on the buckling resistance of the cylinder is very sensitive to the relative mag-
nitudes of axial compression loading, torsional loading, and internal pressure loading
to which the structure is subjected. The rings become more effective as the relative
magnitude of the torsional loading to axial compression loading is increased. The rings
become less effective when the amount of internal pressure loading is increased.

The structural analysis was then implemented in an optimal sizing algorithm. An
equivalent stability constraint, formulated based on the LDLT decomposition of the
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sum of the global finite element stiffness and geometric stiffness matrices, was used in
order to avoid having to repeatedly solve the nonlinear eigenvalue problem associated
with the calculation of buckling loads and mode shapes. Using a combination of in-
direct (penalty function) and direct (feasible direction) optimization methods, optimal
designs of a 15.0 in. radius, 45.00 in. long ring-stiffened cylinders were determined.
These optimal designs were characterized by up to six design variables and satisfied
the Kuhn-Tucker conditions. In one case, two local optima were demonstrated to exist
in the design space. While the designs of these two optima were much different, their
weights differed by only 2%. The presence of the axisymmetric initial imperfection

in the cylinder wall can affect the optimal lamina thickness distributions of the cylin-
der wall, the optimal ring sizes, and the optimal weights of the ring-stiffened cylinder
significantly. The optimization algorithm effectively locates designs which minimize
the effects of the nonlinear deformations caused by the axisymmetric imperfection.
Weight savings associated with the addition of two rings to the unstiffened cylinder
were shown to be 5% for cylinders loaded with torsional and axial compression load-
ing in the ratio of 1:4; however, this weight savings increased to 17% for cylinders
loaded with torsional and axial compression loading in the ratio of 1:1. Accounting for
internal pressurization in the optimal sizing of the imperfect cylinders produced designs
having significantly smaller rings than the corresponding unpressurized cylinders. As
discussed in section 2.2.1, Hutchinson?® indicated that the presence of internal pressure
tended to “iron out” the effects of certain imperfection shapes on the axial buckling
load. Hence, a designer of the pressurized, imperfect cylinder may be tempted to pro-
pose a design closely resembling the optimal perfect, unpressurized cylinder. However,
it has been shown that the optimal cylinder wall lamina thickness distributions of the
pressurized, imperfect cylinders more closely resemble the optimal lamina thickness
distributions of the imperfect, unpressurized cylinders rather than the optimal lamina
thickness distributions of the perfect, unpressurized cylinders. Assuming the presence
of internal pressure “irons out” the effects of initial imperfections on the optimal de-
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sign is flawed. The optimal designs of these imperfect, pressurized cylinders are sub-
stantially lighter than the optimal designs of the corresponding imperfect, unpressurized
cylinders when torsion makes up a significant fraction of the combined load state that
the cylinder is subjected to.

Locations of regions exhibiting peak stresses varied from case to case. Stresses
in the adhesive layer bonding the ring stiffeners to the cylinder wall peak sharply in a
narrow region adjacent to the free edge of the ring flange. The through-the-thickness
normal stress also peaks beneath the ring web. Cylinder wall lamina stresses tend to
be greatest at the clamped ends of the cylinder or in the adjacent shell wall bending
boundary layer. In all but one optimal sizing problem considered in the present study,
the assumption of criticality of the stability constraints and neglect of the stress con-
straints during the optimal sizing of the cylinders produced designs that nevertheless
satisfied all of the stress constraints as well as the stability constraints. In one case,
neglect of the stress constraints resulted in an optimal design that violated an in-plane
matrix cracking constraint at the clamped end of the cylinder. Subsequent re-sizing
of the cylinder to satisfy this constraint resulted in an optimal design that was 49%
heavier than the optimal design produced when the in-plane matrix cracking stress con-
straint was ignored.

Ultimate strengths of the optimal ring-stiffened cylinder designs were evaluated
based on a calculation of the internal pressure necessary to produce a violation of one
of the stress constraints. It was demonstrated that by using an unsymmetrically lami-
nated ring flange, a substantial increase in the strength of the ring flange/cylinder wall
joint is produced.

8.2 Recommendations for Further Work

Lacking in the present study is a series of experiments designed to verify the ob-
served design trends and response phenomena. The complexity involved in fabricating
composite ring-stiffened cylindrical shell specimens and designing and building test fix-

160



ture equipment to apply combined axial compression, torsional, and internal pressure
loads to the specimens put such a detailed experimental investigation beyond the scope
of the present study. However, this study does form the groundwork for further investi-
gation into the analysis and design of more complex shell structures. With a minimum
amount of modification to the existing analysis, ring-stiffened cylinders of honeycomb
sandwich construction could be studied. Such a modification would allow for the in-
vestigation of a proposed design concept for shells having diameters and subjected to
loads more closely approximating the scale of actual acrospace hardware such as an
aircraft fuselage. Permitting more extensive modification of the existing analysis, the
first limiting assumption that should be relaxed is that of axisymmetry of the prebuck-
led equilibrium configuration.

The assumptidn of an asymmetric prebuckled equilibrium configuration would
allow for more general types of loading, including bending, that are more typical of
loads encountered by aerospace vehicle structures and would allow for consideration
of asymmetric material properties, which may be particularly important in the case of
the analysis of the laminated annular plate (see Fig. 3.2.2). Fabrication of composite
ring stiffeners having axisymmetric material properties may not be cost-effective. The
effects of circumferential variation of the material properties on the buckling loads of
these structures should be investigated further. Relaxation of the assumption of pre-
buckling axisymmetry would also permit the investigation of the response of the cylin-
drical shell with random, asymmetric initial imperfections that are more representative
of imperfection shapes present in actual structure than the axisymmetric imperfection
considered in the present study. It is suggested that the effects of such imperfections -
on the prebuckling stress state, particularly in the ring flange/cylinder skin interface re-
gion, be investigated along with the effects of random, asymmetric imperfections on

the structural stability and the optimal designs of ring-stiffened cylinders.

Discrete longitudinal stiffening could also be incorporated into the model if the
assumption of an axisymmetric prebuckling equilibrium configuration is relaxed. This
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is another design concept typical of large acrospace vehicles. Fundamental to an un-
derstanding of such a concept is the knowledge of how to design the structure with
cylinder skins that are postbuckled. Assuming the vehicle is to be designed to have
postbuckled skins, a geometrically nonlinear analysis of the vehicle structure with post-
buckled skins is warranted. Assuming that no buckling from this geometrically nonlin-
ear equlibrium state is to be allowed, stability constraints could be established using
the methods of the present study. However, should the structure be fabricated with
secondarily bonded or co-cured stiffeners, the presence of postbuckled skins would
almost certainly necessitate a more detailed consideration of stress constraints in the
skin/stiffener interface than that of the present study. '

From the standpoint of optimal design, consideration should be given to the in-
vestigation of the convergence problems discovered during the course of the present
study so that a more robust optimal design algorithm can be developed. Tailoring of
the ring flange stiffness to reduce the flange/skin interface stresses should be investi-
gated as well as adding more numerous and complex design variables to the investiga-
tion. As the technology needed for the location of globally optimum designs matures
(see, for example, Hajela!3') these techniques should be applied to the optimal design
of stiffened shell structures since it is known that the optimal sizing of these structures
is characterized by the existence of a large number of local optima. Development of a
hybrid algorithm of a global optimization technique and a method similar to one of the
two outlined in the present study would likely be a most efficient approach.

162



10

11

REFERENCES

Jackson, A. C., Campion, M. C., and Pei, G., “Study of Utilization of Advanced
Composites in Fuselage Structures of Large Transports,” NASA CR-172404, Sept.
1984.

Dickson, J. N., and Biggers, S. B., “Design and Analysis of a Stiffened Composite
Fuselage Panel,” NASA CR-159302, Aug. 1980.

Bushnell, D., “Panel Optimization With Integrated Software (POIS) PANDA-
Interactive Program For Preliminary Minimum Weight Design,” AFWAL-TR-81-
3073, July 1981. 7

Bushnell, D., “PANDA?2 - Program For Minimum Weight Design Of Stiffened,
Composite, Locally Buckled Panels ,” AFWAL-TR-86-3056, Sept. 1986.

Niu, M.C. Y, A irframe Structural Design, Conmilit Press Ltd., Hong Kong,
1988, pg. 377.

Bushnell, D., “Buckling of Shells: Pitfall For Designers,” A1AA4 Journal, Vol. 19,
Sept. 1981, pp. 1183-1226.

Stames, J. H., Jr., Knight, N. F, Jr. and Rouse, M., “Postbuckling Behavior of
Selected Flat, Stiffened, Graphite-Epoxy Panels Loaded in Compression,” A 14 A
Journai, Vol. 23, Aug. 1985, pp. 1237-1246.

Schmit, L. A., Jr., “Structural Design By Systematic Synthesis,” Proceedings

of the 2nd National Conference on Electrical Computation, Structural Div.

ASCE, 1960, pp. 105-132.

Haftka, R.T., Giirdal, Z., and Kamat, M.P, Eiements of Structural Optimization,
Kluwer Academic Publishers, Boston, Massachusetts, 1989.

Leissa, A. W., “Vibration Of Shells,” NASA SP-288, 1960.

Fligge, W., “Die Stabilitit der Kreiszylinderschale,” Ingenieur-Archiv, Bd 3,

1932, pp. 463-506.

163



12

13

14

15

16

17

18

19

20

21

22

Sanders, J. L., “Nonlinear Theories For Thin Shells,” Quarteriy of Applied Ma-
thematics, Vol. 21, Apr. 1963, pp. 21-36.

Donnell, L. H., “Stability Of Thin-walled Tubes Under Torsion,” NACA TR-479,
1933.

Donnell, L. H., “A New Theory For Buckling Of Thin Cylinders Under Axial
Compression And Bending,” 1rans. Asm e, Vol 56, 1985, pp. 795-806.
Marguerre, K., “ Zur Theorie Der Gekriimmten Platten Mit Grosser
Forminderung,” Proceedings of the Sth International Congress on

Applied Mechanics, 1938, pp. 93-101.

Hoff, N. J., “The Accuracy of Donnell’s Equations,” Journal of Applied Mechan-
ics, Vol. 22, Sept. 1955, pp. 329-334.

Dong, S. B, Pister, K. S., and Taylor, R. L., “ On the Theory of Laminated
Anisotropic Shells and Plates,” Journail of the A erospace Sciences, Vol. 29,
Aug. 1962, pp. 969-975.

Wuy, C. H,, “Buckling of Anisotropic Circular Cylindrical Shells,” Ph.D. Disserta-
tion, Case Western Reserve Univ., June 1971,

Simitses, G. J., Shaw, D., and Sheinman, L, “Stability of Cylindrical Shells by
Various Nonlinear Shell Theories,” ZAMM Z. Angew. Math. u. Mech., Yol. 65,
1985, pp. 159-166.

Simitses, G. J., Sheinman, L., and Shaw, D., “The Accuracy of Donnell's Equa-
tions for Axially Loaded , Imperfect Orthotropic Cylinders,” computers and
Structures, Vol. 20, 1985, pp. 939-945.

Seide, P., and Weingarton, V. L, “On the Buckling of Circular Cylindrical Shells
Under Pure Bending,” Journal of Appiied Mechanics, Vol. 28, 1961, pp. 112-
116.

Crate, H., Batdorf, S. B., and Baab, G. W., “The Effect of Internal Pressure on the
Buckling Stress of Thin-walled Cylinders Under Torsion,” NACA ARR-L4E27,

164



23

24

25

26

27

28

29

30

31

32

33

1946.

Donnell, L. H., and Wan, C. C., “On the Buckling Thin Cylinders and Columns
Under Axial Compression,” Journal of Applied Mechanics, Vol. 17, Mar. 1950,
pp. 73-83.

Koiter, W. T., “The Effect of Axisymmetric Imperfections on the Buckling of
Cylindrical Shells Under Axial Compression,” Lockheed Technical Report N63
21285, Aug. 1963.

Hutchinson, J. “Axial Buckling of Pressurized Imperfect Cylindrical Shells,”
AIAA Journal, VoL 3, Aug. 1965, pp. 1461-1466.

Thurston, G. A., “A New Method for Computing Axisymmetric Buckling of
Spherical Caps,” Journal of Applied Mechanics, Vol. 38, Mar. 1971, pp. 179-
184.

Stein, M., “The Influence Of Prebuckling Deformations and Stresses on the Buck-
ling of Perfect Cylinders,” NACA TR R-190, Feb. 1964.

Almroth, B. O., “Influence of Imperfections and Edge Restraint on the Buckling
of Axially Compressed Cylinders,” NASA CR-432, Apr. 1966.

Tennyson, R. C., Muggeridge, D. B., and Caswell, R. D., “New Design Criteria
for Predicting Buckling of Cylindrical Shells Under Axial Compression,” Journar
of Spacecrant, VoL 8, Oct. 1971, pp. 1062-1067.

Ambartsumyan, S. A., “Theory of Anisotropic Shells,” NASA TT F-118, 1964.
Cheng, S., and Ho, B. P. C., “Stability of Heterogenous Aclotropic Shells Under
Combined Loading,” A1aA Journai, Vol. 1, Apr. 1963, pp. 892-898.

Holston, A., Jr., “Buckling of Inhomogeneous Anisotropic Cylindrical Shells By
Bending,” A14 A Journai, Vol. 6, Oct. 1968, pp. 1837-1841.

Card, M. F, “The Sensitivity of Buckling of Axially Compressed Fiber Reinforced
Cylindrical Shells to Small Geometric Imperfections,” Ph.D. Dissertation, Virginia
Polytechnic Institute and State University, June 1969.

165



34

35

36

37

38

39

40

41

42

43

Tennyson, R. C., Chan, K. H,, and Muggeridge, D. B., “The Effect of Axisym-
metric Shape Imperfections on the Buckling of Laminated Anisotropic Circular
Cylinders,” cAsi Trans., Vol. 4, Sept. 1971, pp. 131-139.

Booton, M., “Buckling of Imperfect Anisotropic Cylinders Under Combined Load-
ing,” UTIAS Report No. 203, Toronto, Aug. 1976.

Jones, R. M., and Hennemann, J. C., “Effect of Prebuckling Deformations on
Buckling of Laminated Composite Circular Cylindrical Shells,” pProceedings
of the AIAA/ASME/ ASCE/AHS 19th Structures, Structural

Dynamics, and Materials Conference, 1978, Pp. 370-379.

Simitses, G. J., Shaw, D., and Sheinman, L, “Imperfection Sensitivity of Lami-
nated Cylindrical Shells in Torsion and Axial Compression,” Com posite Struc-
tures, Vol. 4, 1985, pp. 335-360.

van der Neut, A., “The General Instability of Stiffened Cylindrical Shells Under
Axial Compression,” Nationaal Luchtvaartlaoboratorium, Amsterdam, Report No.
S.314,1947. o '

Stein, M., Sanders, J. L., and Crate, H., “Critical Stress of Ring-Stiffened Cylin-
ders in Torsion,” NACA Report No. 989, 1950.

Block, D. L., “Influence of Ring Stiffeners on Instability of Orthotropic Cylinders
in Axial Compression,” NASA-TN-D-2482, Oct. 1964.

Haftka, R., and Singer, J., “Buckling of Discretely Ring-Stiffened

Cylindrical Shells,” 1srael Journal of Technology, Yol. 6, 1968, pp. 125-137.
Baruch, M., and Singer, J., “Effect of Eccentricity of Stiffeners on the General
Instability of Stiffened Cylindrical Shells Under Hydrostatic Pressure,” Journal of
Mechanical Engineering Sciences, Vol. 5, 1963, PP- 23-27.

Block, D. L., Card, M. F,, and Mikulus, M. M., “Buckling of Eccentrically Stiff-
ened Orthotropic Cylinders,” NASA TN D-2960, 1965.

166



44

45

46

47

48

49

50

51

52

53

54

Hutchinson, J. W., and Amazigo, J. C., “Imperfection Sensitivity of Eccentrically
Stiffened Cylindrical Shells,” A14A Journal, Vol. 5, March 1967, pp. 392401.
Bushnell, D., “Evaluation of Various Analytical Models for Buckling and Vibra-
tion of Stiffened Shells,” A1a A Journal, VoL 11, Sept. 1973, pp. 1283-1291.
Bushnell, D., “Stress, Stability, and Vibration of Complex Branched Shells of Rev-
olution,” NASA CR-2116, Oct. 1972.

Jones, R. M., “Buckling of Circular Cylindrical Shells With Multiple Orthotropic
Layers and Eccentric Stiffeners,” A14A Journal, Vol. 6, Dec. 1968, pp. 2301-
2305.

Jones, R. M., and Morgan, H. S., “Buckling of Stiffened Laminated Composite
Circular Cylindrical Shells With Different Moduli In Tension and Compression,”
AFOSR-TR-75-0547, Feb. 1975.

Wang, J. T. S., and Hsu, T. M., “Discrete Analysis of Stiffened Composite Cylin-
drical Shells,” A14 A Journat, Vol. 23, Nov. 1985, pp. 1753-1761.

Wang, J. T. S., and Biggers, S. B., “Skin/Stiffener Interface Stresses In Composite
Stiffened Panels,” NASA CR-172261, Jan. 1984.

Tsai, H. C., “Prediction of Skin-Stiffener Separation of Integrally Stiffened Com-
posite Panels Under Combined Loads,” NADC Report NADC-86052-60, Jan.
1986. |

Hyer, M. W., Loup, D. C., and Starnes, J. H., Jr., “Stiffener/Skin Interactions In
Pressure-Loaded Composite Panels,” 4144 Journat, Vol. 28, Mar. 1990, pp. 532-
537.

Hyer, M. W. and Cohen, D., “Calculation of Stresses in Stiffened Composite Pan-
els,” A1aA Journal, Vol. 26, July 1988, pp. 853-857.

Boitnott, R. L., “Nonlinear Response and Failure of Internally Pressurized Com-
posite Cylindrical Panels,” Ph.D. Dissertation, Virginia Polytechnic Institute and
State University, March 1985.

167



55

56

57

58

59

60

61

62

63

64

Hyman, B. I, and Lucas, A. W,, Jr., “An Optimum Design For the Instability of
Cylindrical Shells Under Lateral Pressure,” A14 A Journal, Yol 9, Apr. 1971, pp.
738-740.

Singer, J., and Baruch, M., “Recent Studies On Optimization For Elastic Stabil-
ity of Cylindrical And Conical Shells,” Proceedings of the 5th Congress of the
International-Council of the Aeronautical Sciences, Sept. 1966, pp. 751-782.
Burns, A. B., “Optimum Stiffened Cylinders For Combined Axial Compression
and Internal or External Pressure,” Journal of Spacecrart, Vol. 8, Oct 1971, pp.
1062-1067.

Kicher, T. P,, “Structural Synthesis of Integrally Stiffened Cylinders,” Journas or
Spacecraft and Rockets, Yol. 5, 1968, pp. 62-67.

Schmit, L. A., Jr., Morrow, W. M. II, and Kicher, T. P,, “A Structural Synthe-

sis Capability For Integrally Stiffened Cylindrical Shells,” Proceedings of the
AIAA/ASME/ASCE/AHS 9th Structures, Structural Dynamics, and M ateri-
als conrerence, AIAA Paper No. 68-327, 1968.

Simitses, G. J., and Ungbhakorn, V., “Weight Optimization of Stiffened Cylinders
Under Axial Compression,” Computers and Structures, Yol. 5, 1975, pp. 305-
314.

Simitses, G. J., and Aswani, M., “Minimum Weight Design of Stiffened Cylin-
ders Under Hydrostatic Pressure,” Proceedings of the AIAA 13th Aerospace
Sciences Meeting, AIAA Paper No. 75-138, Jan. 1975.

Simitses, G. J., and Giri, J., “Minimum Weight Design of Stiffened Cylinders Sub-
ject To Pure Torsion,” computers and Structures, Vol. 7, 1977, pp. 667-677.
Simitses, G. J., and Giri, J., “Minimum Weight Design of Stiffened Cylinders Sub-
ject To Torsion Combined With Axial Compression and Without Lateral Pressure,”
Computers and Structures, Vol. 8, 1978, pp. 19-30.

Simitses, G. J., and Sheinman, L, “Optimization of Geometrically Imperfect Cylin-

168



6%

66

67

68

69

70

71

72

73

74

75

drical Shells Under Axial Compression,” Computers and Structures, Vol. 9,
1978, pp. 377-381.

Bronwicki, A. J., Nelson, R. B., Felton, L. P, and Schmit, L. A., Jr., “Optimiza-
tion of Ring-Stiffened Shells,” A14 4 Journas, Vol. 13, Oct. 1975, pp. 1319-1325.
Pappas, M., “Improved Synthesis Capability For T-Ring Stiffened Cylindrical
Shells Under Hydrostatic Pressure,” Computers and Structures, Vol. 6, 1976,
pp. 339-343.

Pappas, M., “Optimal Frequency Separation of Cylindrical Shells,” A1AA Jour-
nat, Vol 16, Sept. 1978, pp. 999-1001.

Kunoo, K., and Yang, T. Y., “Minimum Weight Design of Cylindrical Shells With
Multiple Stiffener Sizes,” A14A Journai, Vol. 16, Jan. 1978, pp. 3540.

Pappas, M., and Moradi, J., “Optimal Design of Ring-Stiffened Cylindrical Shells
Using Multiple Stiffener Sizes,” A14 A Journat, Vol. 18, Aug. 1980, pp. 1020-
1022.

Qiu, R., “Weight Optimization of Stiffened Cylinders Under Axial Compression,”
Computers and Structures, Vol. 21, 1985, pp. 945-952.

Tasi, J., “Effect of Heterogeneity on the Stability of Composite Cylindrical Shells
Under Axial Compression,” A1A A Journal, Vol. 4, June 1966, pp. 1058-1062.
Hirano, Y., “Opﬁmiz.éﬁon of Laminated Composite Cylindrical Shells For Axial
Buckling,” Transactions of the Japan Soclety For Aeronautical and Space Sci-
ences, Vol. 25, May 1982, pp. 154-162.

Nshanian, Y. S., and Pappas, M., “Optimal Laminated Composite Shells For Buck-
ling and Vibration,” A14 A Journas, Vol. 21, Mar. 1983, pp. 430-437.

Onoda, J., “Optimal Laminate Configurations of Cylindrical Shells For Buckling,”
AIAA Journal, Yol. 23, July 1985, pp. 1093-1097.

Sun, G., “A Practical Approach To Optimal Design of Laminated Cylindrical
Shells For Buckling,” com posites Science and Technology, Vol. 36, 1989, pp.

169



76

(i

78

79

80

81

82

83

84

85

243-253.

Hu H., and Wang S. S., “Optimization For Buckling Resistance of Fiber-Compo-
site Laminate Shells With And Without Cutouts,” Proceedings of the AIAA/
ASME/ASCE/AHS 31st Structures, Structural Dynamics, and Materials
Conference, 1990, pp. 1300-1312.

Chao, T. L., “Minimum Weight Design of Stiffened Fiber Composite Cylinders,”
AFML-TR-69-251, Sept. 1969.

Agarwal, B. L., “Minimum Weight Design of Axially Compressed Unstiffened
and Stiffened Composite Cylinders,” Ph.D. Dissertation, University of Cincinnati,
1975.

Hansen, J. S., and Tennyson R.C., “Optimum Design For Buckling of Laminated
Cylinders”, Cotlapse: The Buckling of Structures in Theory and Practice, Uni-
versity Press, Cambridge, 1982, pp. 410-429.

Narusberg, V. L., Rikards, R. B., and Teters, G. A., “Optimization of a Reinforced
Plastic Shell With Allowance For Geometrically Nonlinear Factors,” M ekhanika
Polim erov, Vol. 6, Dec. 1978, pp. 1079-1083.

Gajewski, A., and Zyczkowski, M., Optimas Structural Design Under Stability
Constraints, Kluwer Academic Publishers, Boston, 1988.

Sun, G., and Hansen, J. S., “Optimal Design of Laminated Composite Circular
Cylindrical Shells Subjected To Combined Loads,” Journal of Applied Mechan-
ics, Vol. 55, Mar. 1989, pp. 136-142.

Ringertz, U. T., “Optimal Design of Nonlinear Shell Structures,” The Aeronautical
Research Institute of Sweden Report, FFA-TN 1991-18, 1991.

Jones, R. M., Mechanics of Composite Materiails, Scripta Book Company, Wash-
ington D.C., 1975, pp. 31-57 and pp. 147-156.

Frederick, D. and Chang, T. S., continuum M echanics, Scientific Publishers,
Cambridge, 1965, pp. 99-102.

170



86 [ ekhnitskii, S. G., A nisotropic Plates, Second Edition, Gordon and Breach, New
York, 1968, pp. 369-373

87 Bryant, R. H., “Solutions For Axially Symmetric Orthotropic Annular Plates,”
Journal of Aircrart, Vol. 7, Dec. 1970, pp. 570-572.

88 padovan, J., “Static Solution of Monoclinic Laminated Circular Plates,” 414 A
Journal, Yol. 12, June 1974, pp. 862-863.

89 Boyce, W. E., and DiPrima, R. C., Elementary Differential Equations and
Boundary Value Problems, John Wiley and Sons, Inc., New York, 1977, pp.
272-275 and pp. 324-328.

90 Goland, M., and Reissner, E.,“ The Stresses In Cemented Joints,” 7Transactions or
AsME, Vol 11, Mar. 1944, pp. A-17-A-26.

91 [ ybkin, J. L., and Reissner, E.,* Stress Distribution And Design Data For Adhe-
sive Lap Joints Between Circular Tubes,” Transactions of AsME, Vol. 78, Mar.
1956, pp. 1213-1221.

92 Terekhova, L. P, and Skoryi, L. A.,* Stresses In Bonded Joints Of Thin Cylindri-
cal Shells ,” strength of Materials, Translated from Problemy Prochnosti No.
10, Oct. 1972, pp. 108-111.

%3 Adams, R. D., and Peppiatt, N. A., “Stress Analysis Of Adhesive Bonded Tubular
Lap Joints,” Journal of A dhesion, Vol. 9, Oct. 1977, pp. 1-18.

% Updike, D. P, and Yuceoglu, U., “Tubular Lap Joints in Composite Cylindrical
Shells Under External Bending and Shear,” pProceedings of the Fourth Interna-
tional Conference on Composite Materials, Tokyo, Japan, Oct. 1982, pp. 297-

304.

95 Chon, C. T., “Analysis of Tubular Lap Joint in Torsion,” Journal of Composite
M aterials, Vol. 16, July 1982, pp. 268-284.

9 Hart-Smith, C. J., “Adhesive-Bonded Single-Lap Joints,” NASA CR-112236, Jan.
1973.

171



97

99

100

101

102

103

104

105

106

107

Kalnins, A.,“ Analysis of Shells Of Revolution Subject To Symmetric and Non-
symmetric Loads,” Transactions of A SME, Vol. 86, Sept. 1964, pp. 467-476.

Corvelli, N., “Design Of Bonded Joints In Composite Materials,” Proceedings
of the NASA/GWU/ASM Symposium On Weiding, Bonding and Fastening,
Williamsburg, Virginia, June 1972, pp. 1-4.

Budiansky, B., and Radkowski, P. P., “Numerical Analysis of Unsymmetrical
Bending of Shells of Revolution,” A1A A Journai, Vol. 1, Aug. 1963, pp. 1833
1842,

Cohen, G., “Computer Analysis of Asymmetrical Deformation of Orthotropic
Shells of Revolution,” A/A A Journat, Vol. 2, May 1964, pp. 932-934.

Cohen, G., “Computer Analysis of Axisymmetric Buckling of Ring-Stiffened Or-
thotropic Shells of Revolution,” A14 4 Journai, Vol. 6, Jan. 1968, pp. 141-149.

Jordan, P. E, and Shelley, P. E., “Stabilization of Unstable Two-Point Boundary
Value Problems,” A14A Journai, Vol. 4, No. 5, 1966, pp. 923-924.

Cohen, G., “Numerical Integration of Shell Equations Using The Field Method,”
Journal of Applied Mechanics, Vol. 41, Mar. 1974, PP- 261-266.

Cohen, G., “FASOR - A Program For Stress, Buckling and Vibration of Shells of
Rcvolution,” Adv. Eng. Software, Vol. 3. 1981, PP. 155-162.

Potters, M. L., “A Matrix Method For The Solution of a Second Order Difference
Equation in Two Variables,” M athem atich Centrum, Amsterdam, Holland, Re-
port MR 19, 1955.

Almroth, B. O., Brogan, F. A. and Stanley, G. M. “Users Manual For STAGS,”
NASA CR-165670, 1978.

Blum, R. E., and Fulton, R. E., “A Modification of Potter’s Method For Solving
Eigenvalue Problems Involving Tridiagonal Matrices,” A7/4 A Journai, Vol. 4,
Dec. 1966, pp. 2251-2252.

172



108

109

110

111

112

113

114

115

116

117

Keller, H. B., “Numerical Solution of Two Point Boundary Value Problems,” No.
24 in the CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM

Publishers, 1976, pp. 39-48.

Thurston, G. A., “Roots of Lambda Matrices,” Journal of Applied Mechanics,
Vol. 45, Dec. 1978, pp. 859-863.

Sun, G., “Optimization of Laminated Cylinders For Buckling,” UTIAS Report No.
317, Toronto, May. 1987, pp. 24-32.

Meirovitch, L., computational Methods in Structural Dynamics, Sijthoff and

Noordhoff, 1980, pp. 50-72.

Reddy, J. N,, An Introduction To The Finite Element Method, McGraw Hill,

New York, 1984, pp. 65

Haftka, R. T,, and Stames, J. H., Jr., “Applications of a Quadratic Extended Inte-
rior Penalty Function For Structural Optimization,” 414 A Journai, Vol. 14, June,
1976, pp. 718-724.

Grandhi, R. V,, Thareja, R., and Haftka, R. T., “NEWSUMT-A : A General Pur-
pose Program For Constrained Optimization Using Constraint Approximations,”
Journal of Mechanisms, Transmission, and Automation In Design, Vol. 107,

1985, pp. 94-99.

Fiacco. A. V., and McCormick, G. P., Nonlinear Programming: Unconstrained
Minimization Techniques, John Wiley and Sons, Inc., New York, 1968, pp. 39-
52.

Cassis, J. H., and Schmit, L. A., Jr., “On Implementation Of The Extended Inte-
rior Penalty Function,” International Journal For Numerical Methods in Engi-

neering, Vol. 10, Jan., 1976, pp. 3-23.

Schmit, L. A., Jr., and Farshi, B., “Some Approximation Concepts For Structural
Synthesis,” A1A A Journal, Vol. 12, May, 1974, pp. 692-699.

173



118

119

120

121

122

123

124

125

126

127

128

Zoutendijk, M., M ethods of Feasible Directions, Elsevier Publishing Co., Ams-

terdam, 1960.

Vanderplaats, G. N., and Moses, F,, “Structural Optimization By Methods Of Fea-
sible Directions,” Journal of Computers and Structures, Vol. 3, July, 1973, pp.
739-755.

Vanderplaats, G. N., Numerical Optimization Techniques For Engineering De-
sign: With Applications, McGraw Hill, New York, 1984.

Vanderplaats, G. N., “ADS - A Fortran Program For Automated Design Synthesis:
Version 1.10,” NASA CR-177985, Sept. 1985. )

Fukunaga, H., and Vanderplaats, G. N., “Stiffness Optimization Of Orthotropic
Laminated Composites Using Lamination Parameters,” A1A A Journal, Vol. 29,
April, 1991, pp. 641-646.

Olsen, G. R., and Vanderplaats, G. N., “Method for Nonlinear Optimization With
Discrete Design Variables,” A14 4 Journai, Vol. 27, Nov., 1989, pp. 1584-1589.

Tsai, S. W., and Wy, E. M., “A General Theory Of Strength For Anisotropic Ma-
terials,” Journal of Composite Materials, Vol. 5, Jan., 1971, pp. 58-80.

Hashin, Z., “Failure Criteria For Unidirectional Fiber Composites,” Journat or
Applied Mechanics, Vol. 47, June 1980, pp. 329-334.

Rosen, B. W,, Nagarkar, A. P, Pipes, R. B.,and Walsh, R., “Research Study To
Define The Critical Failure Mechanisms In Notched Composites Under Compres-
sion Fatigue Loading,” Material Science Corp. Report No. MSC TFR 1201/1801,
Contract No. N00019-79-C-0633, March, 1981, pp. 5-8. and pp. 33-35

Haftka, R. T., “Design For Temperature And Thermal Buckling Constraints Em-
ploying A Noneigenvalue Formulation,” Journal of Spacecrart, Vol. 20, July-
Aug. 1983, pp. 363-367.

Wilkinson, J. H., and Reinsch, C., Linear A igebra, Springer-Verlag, Berlin, 1971.

174



129 Uthgenannt, E. B., and Brand, R. S., “Buckling of Orthotropic Annular Plates,”
AIAA Journal, Vol. 8, Nov. 1970, pp. 2102-2104.

130 Ramaiah, G. K., “Buckling of Polar Orthotropic Annular Plates Under In-Plane
Compressive Forces,” Journal of Applied Mechanics, Vol. 48, Sept. 1981, pp.

643-653.

131 Hajela, P., “Genetic Search - An Approach To The Nonconvex Optimization Prob-
lem,” A7A A Journai, Vol. 28, July 1990, pp. 1205-1210.

175



[D*]
D1y, (D1y)
Dy

D..

ij

Table 1
NOMENCLATURE

Te @ -&71

[4]

t3Ai;/ Dy,

A3(Dh) /8

L@ l(€8) - (&)
—[A]7*[B]

t,Bij/Di,

Bi;/t,

LY @ led - (7)Y
[D] - [B][4]7[B]

Dyy, D3, of cylinder wall
D;;/ Dy,

D;;/(D11)
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En, Ex;

My, Mz3, My,

7 ! !
M, M3, M,

Hlla Hﬁ% —MH

Ny, Naa, Ny2

Nx, Nxy

Orthotropic moduli

Ring web/cylinder middle surface eccentricity
ecc/L

Orthotropic shear modulus

Total laminate thickness or adhesive layer thickness
Ring ch height

Cylinder length

Stress couples

Buckling stress couples

M L*[(D}y)*ts, M22L? /(D11)"1s,
M2 L?/(D},)"s

M}, L?/(D}yts), M3, L? [(Dihts),
M;, L [(D}sts)

Stress resultants
Applied axial and shear stress resultants
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S

|

Qu
Q22
Q12
Qes

u

Buckling stress resultants

Ny L?/(D}y)*, NaoL?/(Dy,)"s Na2L? /(D1y)
N{,L*/D},, N;,L*| D}y, Ny, L? /D,
Nondimensional applied axial compression load
Number of circumferential waves

Applied axial compression load

Pressure

pRL?/(D3,)"

En /(1 —viavn)

E22/(1 = v1zvn1)

V21El;/(1 — viava) = 12 Epa /(1 — v12vm)
G2

Q11 cos 0 + 2(Q12 + 2Qes) sin® 8 cos? 6+

Q22 sin* 6
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Q2 Q1 sin* 6 + 2(Q12 + 2Qs6) sin® 6 cos? 6+

Q22 cost 6

Q1 (@11 + Q22 — 4Qes) sin? 6 cos? 6+
Q12(sin* 6 + cos* 6)

Qs (Q11 + Q22 — 2Q12 — 2Qes) sin® § cos? 6+
Qes(sin* 6 + cos' §)

Qe (Q11 — Q12 — 2Qss) 5in 6 cos® 8+

(Q12 — Qa2 + 2Qg6) sin® 6 cos 8

Qz (Qu — Q12 — 2Qes) sin® § cos 0+
(@12 — Q22 + 2Qe6) sin d cos® 0

R, R, Radius to middle surface of cylinder
Ry Radius to middle surface of ring flange
t, ~ Total thickness of cylindrical shell wall
T Applied torsional load
Uy Axial displacement (cylinder)

Radial displacement (ring web)
uj Buckling axial displacement (cylinder)

Buckling radial displacement (ring web)
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uz

us

Vi

ux /ta
Ll /22

Circumferential displacement (cylinder)
Circumferential displacement (ring web)

Buckling circumferential displacement
(cylinder)

Buckling circumferential displacement
(ring web)

Ua / t s

Luj/t?

Radial displacement (cylinder)
Normal displacement (ring web)

Buckling radial displacement (cylinder)
Buckling radial displacement (ring web)

U3 / t .
u3/t,
Kirchhoff shear stress resultant
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Wo

Yry» N12
Wzy’ 712

N2

20
~

€zz, €yy, €11, €22

Ezta Ew’ ?lls E22

Vi L*/(D11)'s

Buckling Kirchhoff shear stress resultant

Q1,1 L%/(Dixts)

Cylinder initial geometric imperfection

wo/t,

L?/Rt,

nL/R

Shear strain with respect to load-oriented (global) axes
Yey(L/ts)?, Mma(L/ts)?

Mechanical shear strain with respect to load-oriented
(global) axes of imperfect cylinder

Ha2(L/ts)?

Normal strains with respect to load-oriented (global) axes

e::(L/t,)z, E"(L/t.)z, €11(L/t.)2, 522(L/tl)2
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€11, €22 Mechanical normal strains with respect to load-oriented
(global) axes of imperfect cylinder

a1, 22 €(L/t,)?, &a(L/t,)?

Kzz, Kyyy K11, K22 Curvatures with respect to load-oriented (global) axes
Kz, Eyyy K11, K22 "z:(LzltJ)v "yr(Lz/tl)y "ll(Lz/ta)v 522(L2/ta)

K11, K22 Mechanical curvatures with respect to load-oriented

(global) axes of imperfect cylinder
®11, R2a Ru(L2/t,), Ra(L2/t,)

€1 Axial coordinate (cylinder)
Radial coordinate (ring web)

3 ~ Circumferential coordinate (cylinder)
Circumferential coordinate (ring web)

$ Radial coordinate (cylinder)

Normal coordinate (ring web)
¢k, gkt Thickness coordinates of surfaces of k** lamina
Els E2a -E-s El/Li Eﬁ/L, ES/L
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Viz, V21

=

Ozzy Oyyy 2z

Tyzr Tzzy Tzy

(07, ({39

Cone angle

Lamina fiber orientation angle

Load parameter

Theoretical buckling load parameter of
ring-stiffened cylinder

Imperfection amplitude / ¢,

Major and minor Poisson’s ratios

Stress function (ring web)

Axisymmetric imperfection frequency

Total potential energy

IL?/D},t]

Normal stresses with respect to load-oriented (global) axes

Shear stresses with respect to load-oriented (global) axes

Transpose of matrix [] (vector {})
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0°

(¥ or ()
()=

0Of

0°

0

Rdy

Indicates () is a plate or shell midplane quantity
Indicates () pertains to the cylinder wall
Indicates () pertains to the ring web

Indicates () pertains to the initial imperfection
Indicates () pertains to finite element e
8()/0x

Indicates () is a vector quantity

Objective function (total structural weight)
Design variable

Stability constraint

Stress constraint

Lower, upper bounds on design variables
Number of design variables

Number of stability constraints
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P(g)

Wy

€EKT:

Number of stress constraints
Pseudo-objective function

Penalty parameter

Penalty function

Search direction

Step length along s

Allowable tensile normal stress
Allowable compressive normal stress
Allowable shear stress

Critical load parameter for a buckling

mode with n circumferential waves
Lagrange multiplier

Tolerence on satisfaction of Kuhn-Tucker

conditions for ith design variable
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Table 7.1.1
Assumed Material Properties of Graphite-Epoxy Tape

Property Value Property Value Property Value
E; 18.5 Msi ofT 211. Ksi oAT 6.1 Ksi
E; 1.64 Msi afl® -204. Ksi ofAC -21.4 Ksi
Gi2 0.87 Msi oAl 6.1 Ksi e +13.8 Ksi
V12 0.30 oAC  214Ksi A +9.0 Ksi
toly 0.005 in. A  +138Ksi

p 0.057 1b.fin®
Table 7.1.2

Assumed Material Properties of Graphite-Epoxy Woven Cloth

———— —

“Property ___ Value  Property Value  Property Value
E, 10.1267 Msi ofAT 211. Ksi ofiT 6.1 Ksi
Ez 10.1267 Msi of\C -204. Ksi o$iC -21.4 Ksi
Gi2 0.87 Msi ofiT 211. Ksi h +13.8 Ksi
V12 0.04886 o’ -204. Ksi T +13.8 Ksi
toly 0.014 in. h +13.8 Ksi

p 0.057 Ib./in®
Table 7.1.3

Assumed Material Properties of Ductile Adhesive

Property ~ Value Property Value Property Value
E, 0.500 Msi AT 10. Ksi AT 10. Ksi
E; 0.500 Msi ofiC -10. Ksi ofiC -10. Ksi
Gz 0.185 Msi oA 10. Ksi A +6.0 Ksi
Via 0.35 o -10. Ksi 4 +6.0 Ksi
p 0.057 Ib/in® A +6.0 Ksi
G,ec/Gtan 0.29

186



Table 7.2.1

Description of Design Variables, Side Constraints, and Initial Designs

Design Lower  Upper Initial
Variable Description Bound Bound Design
Ny Number of plies in the strap ~ 0.001 10.0 1.0
(or ring flange and web). Strap
(or ring flange and web) is a
[45N,/0N, ’45N, ]T cloth laminate.
Ly Strap length (or ring flange length). 1.000 4.0 2.000
Hw Ring web radial depth. 0.10 6.0 3.000
Nys Number of 45° plies in the skin.  0.001 none 5.0
Noyo Number of 90° plies in the skin.  0.001 none 5.0
No Number of 0° plies in the skin.  0.001 none 50
Skin is a
['45N45145N45,90N00I0Nols
tape laminate.

187



Load / Imperfection Case Identification

Table 7.2.2

LD P T Nx Nxy I P
D (lbs.) (@b.-in) (@b/in) (@b/in) (w./t,) _ (psi)
1 -250000. 0.0 -2652. 0.0 0.0 0.0
2 -250000. 0.0 -2652. 0.0 0.25 00
3 -250000. 0.0 -2652. 0.0 0.25 70.0
4 -250000. 938000. -2652. 663. 0.0 0.0
5 -250000. 938000. -2652. 663. 0.25 0.0
6 -250000. 938000. -2652. 663. 0.25 70.0
7 -250000. 1875000. -2652. 1326. 0.0 0.0
8§  -250000.  1875000.  -2652. 1326. 025 00
9 -250000. 1875000. -2652. 1326. 0.25 70.0
10 -94000. 1410000. -997. 997. 0.0 0.0
11 -94000. 1410000. -997. 997. 0.25 0.0
12 -94000. 1410000. -997. 997. 0.25 70.0
13 0.0 1625000. 0.0 1149. 0.0 0.0
14 0.0 1625000. 0.0 1149. 0.0 70.0
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Table 7.3.1

Optimal Designs of Unstiffened Cylinders

e —

LD T, % % % NORM.
D (in.) +45 90 0 WT.
1 0.09966 41.322 44.120 14.558 1.000

2 0.14774 45.332 51.361 3.307 1.481

3 0.13322 51.244 48.748 0.008 1.335

4 0.12044 64.400 2.424 33.176 1.000

5 0.16085 57.085 29.880 13.035 1.337

6 0.13780 55.990 44.003 0.007 1.145

7 0.14608 76.159 0.007 23.834 1.000

8 0.17649 67.375 25.900 6.725 1.209

9 0.14745 66.434 33.374 0.192 1.009

10 0.12140 74.388 0.009 25.603 1.000
11 0.13516 43.965 29.320 26.715 1.114

12 0.08758 61.775 30.217 2.008 0.721
13* 0.12057 76.447 0.008 23.545 1.000
40.722 27.094 32.184 1.020

13* 0.12230

* : 2 local optima located
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Table 7.3.2

Optimal Designs of Strap-Stiffened Cylinders

LD % % % i L; NORM %
ID (in.) 145 90 0 (in.) (in.) WT. RING
WT.
1 009966 41.322 44.120 14558 0.0000 1.000 1.000  0.000
2 0.14483 49.823 47513 2.664 0.0158 26442 1476 1.255
3 0.13332 54444 45481 0075 0.0017 1.000 1.339  0.055
5 0.15141 64.812 27211 7977 0.0868 1.6315 1313 3951
8 015241 70.863 27.818 1319 0.2930 1.0000 1.133 7.756
9 0.14200 74.376 25.617 0.007 0.0342 19693 0995 2.044
10 0.09350 89.332 .011 10.657 0.2242 1.0000 0852 9519
11 0.10814 75.243 16.111 8.646 0.2511 10000 0983 9.239
12 0.08594 70.580 23.739 5.681 0.0274 1.0000 0.719 1.388
13 0.08060 85908 0011 14081 0.2249 1.0000 0826 9.919
14 0.05053 97.269 0974 1757 0.0059 1.000 0422 0510
Table 7.3.3
Optimal Designs of “T"-Ring Stiffened Cylinders
LD Lt % % % ty Ly H, NORM %
ID (in.) 45 90 0 (in.) (in.) (in.) WT. RING
WT.
4 0.10785 63.441 16.624 19935 0.0033 1.0000 3.0011 0902 0.501
5 0.14900 62.502 37474 0.024 0.0114 1.6524 24485 1258 1.301
6 0.13466 57.345 42.611 0.044 0.0026 1.0000 3.5326 1.124 0.352
7 0.12179 81440 5.386 13.174 0.0077 1.0000 2.6837 0.843 0.950
8 0.15408 64.230 30.839 4.931 0.0204 1.8397 24425 1.083 2322
9 (.13733 71.984 28.008 0.008 0.0140 23243 2.7283 0964 2.121
10 0.09546 87.698 0.010 12292 0.0114 10000 1.9743 0.800 1.482
11 011019 69.206 14.753 16.041 0.0135 1.0053 24512 0.926 1.733
13 0.09022 83.669 0.011 16.320 0.0138 1.0000 19295 0.764 1.861

190



Table 7.3.4
Active Constraints and Corresponding Lagrange Multipliers
For Unstiffened Cylinder Designs

e —— 1___—_—T‘
STABILITY STABILITY X X"
CONSTRAINTS AS CONSTRAINTS AS

1.420E-5 - -
1.476E-5 - -
0.160E-5 No 0.263
3.813E-4 - -
1.227E4 - -
0.860E-5 . No 0.121
1.399E-4 Noo 0.302
4.602E-5 - -
4.485E-5 - -
4.930E-5 Ngo 0.271
6.993E-4 - -
1.333E-5 - -
2.726E-5 Nyo 0.2648
4.802E-5 - -

3
]

LD
1D
1
2
3
4
5
6
7
8

9
10
11
12
13*
13*

1| O A I IO (I | IO 1
ORI YIRS - YRR I YRR Y K =

I 3A33IJAITIIIIsSN

———— e e—

* . 2 local optima found
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Table 7.3.5

Active Constraints and Corresponding Lagrange Multipliers
For Strap-Stiffened Cylinder Designs

LD STABILITY STABILITY X
ID CONSTRAINTS AS CONSTRAINTS AS
1 n=10 1.420E-5 Ny, Ly 0.868, 0.055
2 n="7 6.484E-5 - -
3 n=_§ 0.154E-5 Ly 0.071
5 n==6 3.916E-5 - -
8 n=6,n=7 3.330E-5 1.390E4 L; 1.2922
9 n="7 1.500E-5 No 0.0786
10 n=9,n=10 1.170E-5, 0.328E-5 Ly, No 1.088, 0.473
11 n==8 0.982E-5 Ly 1.152
12 n=8 0.528E-5 Ly 0.110
13 n=10 4.500E-5 Ngo , Ly 0.975, 0.351
14 n=11,n=14 0.908E-6, 1.170E-5 Ly 0.053
Table 7.3.6
Active Constraints and Corresponding Lagrange Multipliers
For “T” Ring-Stiffened Cylinder Designs
LD STABILITY  STABILITY XT X
ID CONSTRAINTS AS CONSTRAINTS AS
4 n=29 1.132E-5 Ly 0.099
5 n="7 7.286E-6 - -
6 n=_§8 0.587E-6 Lg, No 0.065, 0.161
7 n=9 1.016E-5 Ly 0.102
8 n="7 1.312E-5 - -
9 n="7 1.180E-5 No 0.115
10 n=10 1.310E-5 Ly, Ngo 0.055, 0.356
11 n=_8 0.993E-5 Ly 0.019
13 n=10 1.187E-6 Ly, Ngo 0.090, 0.331
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Table 74.1

Minimum Stress Constraint Values

For Strap-Stiffened Cylinder Optimal Designs

LD Fiber Fiber Mode Matrix Matrix Mode Strap/Skin
ID Mode Location Mode Location Mode
X / Layer X / Layer

1 0.536 (C) 0462/ 0° 0.626 (C) 0.500 / £45° -

2 0.563 (C) 0.447/0° 0.639 (C) 0.500/ £45° 0.697 (AC)
3 0.430 (C) 0447/ 0° 0320 (C) 0.500 / £45° -

5 0.667 (C) 0.449/ 0° 0.769 (C) 0.500 / £45° 0.405 (AC)
8 0.591 (C) 0.438/0° 0.695 (C) 0.500 / £45° 0318 (AT)
9 0.461 (C) 0.440/ 0° 0.433 (C) 0.500/ £45° 0.436 (AC)
10 0.728(C) 0.500/+45° 0.861 (C) 0451 / £45° 0.622 (AD)
11  0.762(C) 0.500/ +45° 0.889 (C) 0.500 / £45° 0.785 (AT)
12 0533(C) 0.500/+45° 0283 (T) 0.500 / £45° 0.871 (AC)
13 0.867(C) 0.178/ +45° 0920 (T) 0.178 / £45° 0.801 (AC)
14 0410(C) 0.500/ +45° -2.74 (T) 0.500 / £45° 0.954 (AC)

(T) : Tension (AT) : Adhesive Tension

(C) : Compression (AC) : Adhesive Compression
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Table 7.4.2
Minimum Stress Constraint Values

For “T” Ring-Stiffened Cylinder Optimal Designs

s
em—

Fiber _ Fiber Mode __ Matix  Matrix Mode  Flange/Skin

LD
ID Mode Location Mode Location Mode
7 X / Layer X / Layer
4 0.608 (C) 0453/0° = 0.676 (C) 0.455/ +45° 0.984 (AT)
5 0.553 (C) 0.440/ 0° 0.645 (C) 0500/ +45° 0.848 (AC)
6 L 1 3 L 1 L 1 ] & xk
7 0.570 (C) 0447/ 0° 0581 (C) 0.447 /] 145° 0.964 (AT)
8 0.628 (C) 0.500/+45° 0.729 (C) 0.500/ £45° 0.782 (AC)
9 ki L 2 i L 2 ] L 1]
10 0.738(C) 0500/+45° 0877(C) 0451/ £45° 0.972 (AT)
11 0780 (C) 0.500/+45° 0903 (C) 0500/ +45°  0.965 (AC)
13 0.865(C) 0.178 / £45° 0.?17 (C) 0.178 ] £45° 0.966 (AT)
(T) : Tension (AT) : Adhesive Tension

(C) : Compression (AC) : Adhesive Compression
** . See Table 7.4.4 (Pressure to failure)
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Table 7.4.3

<

Internal Pressure To Failure

For Strap-Stiffened Cylinder Optimal Designs

LD Pressure Fiber  Fiber Mode Matrix Matrix Mode  Strap/Skin
ID (psi) Mode Location Mode Location Mode
Constraint X /Layer Constraint X /Layer  Constraint
1 1312 0408 (C) 0462/0° -001 (C) 0464/ +45° -
2 2271 0437(C) 0447/0° 0.001 (C) 0500/ +45° 0.651 (AC)
3 1613 0363(C) 0.447/0° -001 (C) 0500/ +45° -
5 2107 0447 (C) 0.500/ +45° 0.004 (T) 0.500/ £45° 0.649 (AC)
8 837 0.510(C) 0.500/ +45° 0.498(C) 0.500/ £45° 0.002 (CT)
8* 1850 0.380 (C) 0.500/ +45° 0.007 (T) 0.500/+45° 0.069 (CT)
9 160.9 0.349 (C) 0.500/ +45° -0.003 (T) 0.500/ £45° 0.393 (AC)
ot 4263 0.000 (C) 0.500/+45° -4.714 (T) 0.500/£45° 0.257 (AC)
10 238 0.662 (C) 0.500/+45° 0.568 (T) 0.444/0° 0.000 (CT)
10* 333 0.635 (C) 0.500/ +45° 0.398 (T) 0444/0° 0.000 (CT)
11 752  0.622 (C) 0.500/ +45° 0.398 (T) 0.500/+45° 0.000 (CT)
11* 1010 0.574 (C) 0.500/+45° 0.064 (T) 0.500/+45° 0.000 (CT)
12 874 0495 (C) 0.500 / £45°  0.006 (T 0.500/ +45° 0.874 (AC)
12t 3126 0.005 (C) 0.500/ +45° -7.680 (T) 0500/ £45° 0.955 (AT)
13 574 0.703 (C) 0.500/+45° 0.140 (T) 0.500/ +45° 0.000 (CT)
13* 648 0.681 (C) 0.500/ +45° -0.023 (T) 0.500/ +45° -0.007 (CT)
14 262 0.646 (C) 0.500/ +45° -0.002 (T) 0.500/ £45° 0.961 (AC)
(D) : Tension (AT) : Adhesive Tension (CT) : Adherend Tension

(C) : Compression (AC) : Adhesive Compression

* : Strap laminate changed to [On, /45N, /45N, ],

t . Matrix cracking failure ignored
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Table 7.4.4
Internal Pressure To Failure
For “T” Ring-Stiffened Cylinder Optimal Designs

ID Pressure  Fiber  Fiber Mode  Matrix  Matrix Mode Flange/Skin
ID (psi) Mode Location Mode Location Mode

Constraint X /Layer Constraint X/ Layer Constraint

690 0495(C) 0453/0° 000 (T) 0.453/0° 0.986 (CT)

2217 0.375 (C) 0.500/ +45° -.001 (C) 0.500/+45° 0.810 (AC)

1782 0.357(C) 0447/0° -001(C) 0453/+45° 0.946 (AOC)

4046 0490 (C) 0447/0° 001 (T) 0444 /0° 0970 (AT)

~N OV a

8 201.8 0398 (C) 0.500/+45° .001 (T) 0.500/£45° 0.767 (AC)
gt 5500 0.000(C) 0.500/+45° -5.651 (T) 0.500/+£45° 0.866 (AT)

9 163.8 0.327 (C) 0.500/ +45° .001 (T) 0.500/+£45° 0.699 (AT)

10 55.1 0.589 (C) 0.500/+45° .014(T) 0442/0° 0979 (AD)
10 1844 -0.004 (T) 0442/90° -5603 (T) 0.442/90° 0.900 (AT)

11 1074 0.583 (C) 0.500/ +45° .001 (T) 0.500/+45° 0.972 (AC)

13 644 0.683 (C) 0.500/+45° 0.000 (T) 0.442/+45° 0964 (AT)
137 2432 -0.001 (T) 0429/ 90° -8.052 (T) 0.500/ £45° 0.850 (AT)

e ——————— —

(T) : Tension (AT) : Adhesive Tension (CT) : Adherend Tension
(C) : Compression (AC) : Adhesive Compression
t : Matrix cracking failure ignored
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P,Ib.

Figure 1.1.1 ,
Ring-Stiffened Cylinder And Imposed Loads
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€1, &2, &3 : Structural Axes e /
1,2,3  :Material Axes e _/‘\
Cylindrical Shell Middle Surface
Figure 3.2.1
Typical Cylindrical Shell Lamina

&1, &2, &3 : Structural Axes Annular Plate Midplane
1,2, : i )
3 Material Axes Figure 3.2.2
Typical Annular Plate Lamina
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Axis of Revolution

| | R

Figure 3.2.3
Cross Section of Ring-Stiffened Cylinder
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Figure 3.3.1
Typical Conical Shell Segment
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Prebuckling Equlibrium And Compatibility
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Ple*'l, p2e+1

U1e+1' U2€+1
vie+ yaetl sie+!, soetl
-— +1 +1 -— e+l e+l
wietl waetl q R1+, R2® Q1e+l. q M1*75, M2
y1m, y2m Q**! | pym, pym
\ /Vlm’ y2m §1 = §le+l ‘p/SIm’ gom
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Ui¢, u2® 1%, p2°
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wié, w2° / Q2e /
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a. Generalized Nondimensional Nodal b. Generalized Nondimensional Nodal
Buckling Displacements and Rotations Buckling Forces and Moments
. Figure 5.2.1
Cylindrical Shell Finite Element
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1
WWIE, wwicHl
wWw2e [ VWI1¢, vwim, 2e+1

§3t fz

vW2e vw2m vwietl,

AR Ve

1e+ 1
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Effect Of Adding Rings To Imperfect, Pressurized Cylinder
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Figure 7.1.7
Case "A" Buckling Mode Shape Of Perfect Ring-Stiffened Cylinder

Figure 7.1.8
Case "A" Buckling Mode Shape Of Imperfect Ring-Stiffened Cylinder
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Effect of Imperfections and Pressurization on
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Appendix A
LAMINA STRESS ANALYSIS OF PREBUCKLED CYLINDRICAL SHELL

A.1 Tangential Stresses

Fig. 3.2.1 shows a typical cylindrical shell lamina with fiber orientation angle 6,
global (structural) coordinate axes £1,¢2, {3 and material coordinate axes 123. Assum-
ing a state of plane stress exists within the lamina, the tangential stress components in

global coordinates are given by

Ozz au 612 Um €zz
{olyn=q 0w (= (o9 Qa2 Qe €yy (4.11)
Tzy Qe Q2 Qse Yzy

where 0.;,0,, and 7, are stresses and ez, €yy and 7., are strains with respect to
the &£y, &2¢2 and &,€; coordinate directions respectively and the Q,; are the lamina
reduced stiffnesses in the global coordinate system ( see Jones®* ). The lamina strains

in the global coordinate system are given by

{ e:: } = { es: } + &3 { n:: } (A.1.2)
Yzy ‘T:y Kzy

For the cylindrical shell considered in this study, strains at any point, {3, through the
thickness of the laminate are given by the axisymmetric form of Egs. (3.3.1.3) through

(3.3.1.5)

63: 2 -éo 2 Ell

t, 11 t

L o t, \L
Vzy 712 0

where &, &, and 7}, are nondimensional middle surface strains, 1, is the nondi-

mensional middle surface curvature defined in Eq. (4.1.19), L is the length and R
is the middle surface radius of the cylinder. Substituting Egs. (4.1.19) and (4.1.21)
into (4.1.18) then substituting the resulting expressions for j,, €, and 712 into Eq.
(A.1.3) results in

] =(£)2(EX'NX+EXN +Ex+ EX T -8 (1) (a1
£ Y3 i 1 24V XY 3 4dx2 t, T ode
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€y = (£)2(EYE°) (A15)

Yoy = (tﬁ) (nylwx +GXYNxy + GXY;w° + GXY, ‘fX, ) (4.16)

where w° is the nondimensional displacement of the middle surface of the cylindrical
shell in the £3 direction defined in Eq (4.1.5) and

2 — —
[ a* AZBAZG)
- Age — —==
— L) ( 22
t —
EX; =122 _ Azels
TR 6X% =22

(A.1.7)

Substitution of Egs. (A.1.4) through (A4.1.6) into Eq. (A4.1.1) yields the stresses with
respect to the global coordinate system &, £2,£;.

&’
ozz = Cho ( w ) & + (Zi;(”?) +Cw°+C3Nx + CiNxy (A.1.8)

&% & w
Oyy = D, (W) &+ D (dX’ ) + D, w° + D3Nx + D4ny (Alg)

d2—o
T2y = Do (—"’) & + D (‘p"’ ) +D,;%° + DsNx + DiNxy  (A.1.10)

dX? dX?
where

Co=-Tu (3 Do =Ty (7

o=—Cu |71z °o==Cu| 1z
Ci = Q1 EX( +Q,,GXY, Dy =Q,EX( + Q,sGXY,
C: =QnEXs + Q,EY +Q,,GXY; Dy = Q12EXs + QuEY + Q5GXYs
Cs = QuEX: + Q,6GXY; D3 = Q;2EX; + @GXY;
Ci= Q1 EX; +Q,GXY,; Dy = QEX; + Q,GXY;
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i,
E, = -616 (‘1';—2)
E, = axsEX4 +665GXY4

E2 = UlCEXz + GzaEY + USGGXY3
Es = Q1eEX1 + QeeGXYi

Ei=QsEX; + QssGXY:
(4.1.11)

and it is understood that the material properties used in these equations are evaluated
at the coordinate, £;, where stresses are to be calculated. The stresses in the (§1,£2,£3)
coordinate system, {0}, can be transformed to stresses in the (1,2, 3) material coor-

dinate system, {0}, using the following equation

{o}mat = [Til{o}on (A.1.12)
where
, cos? 8 sin? 6 2sinfcosf
) = sin® 6 cos? 8 —2sinfcosé | . (A.1.13)

—ginfcosf sinfcosd cos? @ —sin? @
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A.2 Interlaminar Stresses

Consistant with DMV theory, the axisymmetric elasticity equlibrium equations for
a single lamina of the imperfect cylindrical shell depicted in Fig 3.2.1 are (see page 24

of Ref. 54)
aq:iz + Ores
06 = 0&

Orzy | 0Ty
On: _ o A2.2
o0& + 03 ( )

8r,, Oo,, a,,+60',, (dug dwa)

3% T R T 06 \d& T 4

=0 (A21)

dug dz"’°) =0 (A.2.3)

+ Oz E + -df—f
where 0;:,0yy, Try, Tzz, Ty: and o, are stresses with respect to the &€, €262, £1€2,
€1€3, €263, and £3€3 coordinate directions respectively, u3 is the displacement of the
middle surface of the cylinder in the ¢; direction, w, is the initial geometric imperfec-
tion and R is the middle surface radius of the cylinder. Nondimensionalizing &1, u3

and w, as shown in Table 1 yields

1\ o,y Orss _
(Z) e+ =0 (A.2.4)
1\ Oy  Ory: _
(3) « SR L (4.25)

0oz [, dw°® dw, t, dw° | dw,\ _
A (LZ) (dz, *E, ) e (Lz) (dz, TE, ) =0. (425)

where L is the length and ¢, is the total thickness of the cylinder. Substituting Eqs.
(A.1.8) through (A.1.10) into Egs. (A.2.4) through (A.2.6), performing the integra-

tion with respect to {3 and solving for the interlaminar stresses 7., 7y, and o,, gives

T2e = TX Z(X)€2 + TX Z,(X)& + F(X) (A.2.7)
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Oz = SZy(X)E3 + SZ2(X)E3 + SZ3(X)es + H(X)

where X = £, as shown in Eq. (4.1.4) and

TXZy(X) = — (%) %ﬁ_:;
e --(2) - (3) &
rscn--(3)
ENOEAGE:
5210 = (i)

SZy(X) = (;%) %xl: - [(tzf’) (?XO T )] ixs

(‘PW d’ﬁo)] ST
+

(A.2.8)
(A.2.9)

(A.2.10)

(A.2.11)

(A.2.12)

(A.2.13)

(A.2.14)

(A.2.15)

2L ' 2R L’) axz ' dx?
Z.(X t,C1\ [dw°  dw,\] Iw°
LX) =- |\ )\&xtx )| &
o (t'Cl) &w +d"u?.,) LT
IR T\I? ) \dx? 7 dx? /| dx?
— [ t:C2 dw’ + dw, do®
[ 2 dX dX dX
[ D, t,C &w° | d&*w,\]_,
* -7*__( I? ) (dxz * dx2)]"’
Dy (1,6 (&% | £T\] %
+._R_—(L2)(dx2 dxz)]NX
.D4 t,Cy w? d?mo 1\ dF
* -7 - ( 2 ) (dX2 dxz)] Nxy - (L) H(A.ZIG)



The nondimensional radial displacement, w°, is given Egs. (4.1.32), (4.1.38) and

(4 .1 .39) and the nondimensional initial geometric imperfection, ¥, is given in Eq.
(4.1.25). The functions of integration F(X), G(X), and H(X) can be determined us-
ing the appropriate surface traction on one side of the laminate and enforcing interlam-
inar continuity of the stresses given in Egs. (A4.2.7) through (A4.2.9). For the cylindri-
cal shell under internal pressure, the appropriate boundary conditions on the innermost
surface of the first lamina are

Tes=Ty;=0 and 0;;=-—p (A.2.17)

where p is the (positive) value of internal pressure. The functional form of F(X),
G(X), and H(X) can be determined easily since the solutions for 7e;, 7y and 0.,
given in Eqs. (A.2.7) through (A4.2.9) are separated in X and {3. The necessary cal-
culations are straightforward but algebraically intensive; hence, they are omitted here
for brevity. Since integration of Egs. (A.2.4) through (A.2.6) through the entire lam-
inate thickness must produce the shell equations used in section 4.1, the surface trac- -
tions on the exterior of the outermost surface of the outermost lamina must be zero.
This provides a useful check on the calculations. The resulting interlaminar stresses
can be written with respect to the material coordinate system using the following trans-

formation equations

T13 = Tz;c086 — 7y,sin b (A.2.18)
To3 = Tz;8in8 + 7y,c086 (A.2.19)
033 = O3 (A.2.20)
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Appendix B

FORMULATION OF EQUILIBRIUM EQUATIONS GOVERNING THE RESPONSE

OF A RING FLANGE AND ATTACHED SKIN AS A SYSTEM OF

FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS

While the nondimensional equations governing the tangential equilibrium of the

frame flange, Egs. (4.4.38) and (4.4.39), and the tangential equilibrium of the at-

tached skin, Egs. (;4.4.41) and (4.4.42), are of order two with respect to the nondi-

mensional tangential displacements %} and w3, the equations governing the radial equi-
librium, Eqgs. (4.4.40) and (4.4.43), are of order three with respect to these quantities.
The third order derivatives can be eliminated by first differentiating Eqs. (4.4.38) and

(4.4.39) with respect to £,. This yields
ﬁf ( ) daul fd‘ +(au —aus)Jzus — au fﬁ“s

11

dfl d£1 d¢, d£1
I f
—au,{di?.; +au{£+au£ﬁ fd_o
d¢, d¢; d¢, S dE,
and
=1 (L) &eaf _ d'E S g 253
—_ =qv 4 (av, —av —_— — —
16\ 3, d-i 1 df: (av; 3) p, : " df:
8
- avsfd'?.‘; + av,{ = + d—; - !ﬁ;
d¢, d¢, dEx 3
Differentiating Egs. (4.4.41) and (4.4.42) with respect to €, gives
—s L da—oc d4—<u J)—oa d2—°f
B (t_) :-: =au _ + (auf + aug)—;— u2 + aug '-:g
. d§, dfl d¢; d€,
f s f s
+au;dl?.° - aug =) —au;ﬁ--l- u;-—u_L
d¢, d§, d¢, d¢,
and
_— L) fuy L dug &' 1y
— =av + (av} + av))—3- + av;—2-
16 (t, dE‘I 1 d.e.: 2 4 dff 3 dﬁ:
due! (44 di’ TP
+ av! == — av! —=— — av] —=2— + av—=
&, &, Cd

(B.1)

(B.2)

(B.3)

(B.4)



where (see Eqs. (4.4.29) through (4.4.33))

auj

! =l 57 f —<f
B1,(BuiAss — Bay Ass
= 7 _ 7 =
A1 Ags — Arsdie

auj = (Zy)

) -
auy =

z-1!1--“‘-{!{6 - zfoz{o
of = R
A1 456 — Aj64re
auf = fﬁ_{}?a'_zt%_ ,
A1 Ass — Ajedre
auf = —fﬁ—{}ag_sz_,
AnAge — ArsAie aul
auf = —1?—{1-0_3_2;6_, —
An1Ags — Aredre Zg
and
av{ = —_B-{e_(;ﬁ{_l?{‘i :;Eéfzfl)
Ay 4se — Aredis
of = - (1) Bl
Rt A{I fﬁ - A{eA{e
av:‘,f = —-IE{;?BIX!{G ;
A Age — A4
avy = _—!—B-—%?B.—-{{s_!
Aj1Adss — Ars4ie
avg = '—f%ﬁﬁz{ A
Aj14ge — AreAie
avg = '—f%vgz;{‘_,
Aj 1 Age — AleAdie
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=5 ~1 =57 —f —f  _
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auz =
au: =
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_ Bu(Bufse - Budi)
I;IZ;G - Z;sz;e
o A
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B}, K545
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Now substituting Eqs. (B.1) through (B.6) into Egs. (4.4.38) through (4.4.43) and

collecting terms yields

&*u; el duy’
e1] il +e 1’$ 2 +e:1fd3“_3 +e1{‘m§ +c15u1f+clf7€—+c1!ul =0 (B.7)

-2 =2
d¢, 1 1 1

2! dz“‘ +e2f %, d3“3 +e2f 22 day’ +e2faf +e2fur =0 (BS)
1 1 1 d€1
! i)
3’*3 + 3""2 =3+ 3T, ’+e3{ﬁ+e3ff.-?¥
d¢, d¢, d¢, déy
+ 3! '3 +e3.{ig' +e3] di;” +e3] =2 9% _ 5 (B.9)
dfx dfl dfl
el] 5] + 12d2 +e 13d3u3 +e 14d:° +315u1'+c16d_o +elizyf =0 (B.10)
d 1 1 1 ¢, d¢,
d2 d?—oa ] _o
€21 + 23— gz + 23d3u3 + 24£ +e2593" + e2zuz’ =0 (B.11)
dgy 1 £ 1 dt,
d‘ 3’ ’
+ 32‘1!2 + e33T3° + €3 —— an’ +c35d—°
1 1 df, d¢,
+ ":36‘12 +e3m + e38d_° + e3;£—§— = —-Nuﬁl-%i (B.12)
dfl dﬁl dEl dfl
where

- (L — (L
61{ = Au (Z) cl{ = All (E)
=7 (2)

et (D) wem(d)

el = ’§{1 el = -By,

el = 2{2 (RI;;) +Kpy eli= 4, (I:j.) -Kpg,

el = _C'-f, elg = -5:’3

1} =, 13=-Fa;

el =-Cpy el = -aﬁ (B-13)
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2! =B} €2} = -Bg,
() = (wm)
2, =A e =A
€iy 26 (R t.) 4 26 R.t.
s B
e2; =Cy3 2§ = Cp3
626 = - ﬁ 326 -— "6
(B.14)
e3] = Du +auf + avl
63{ = (Bu +Bl2) ( ) +au{ - au;{ +av{ — av]
L2
-4, (—") +Cs
—f L3
c3{ = —Aj, (E-t_z) - aug - av,{
I3
63{— I (R tz) +au{+avg
633‘6f = —au{ - av{
e3-‘,’ = —5;
e3f = au,{ + av,{
e3! = —aul - av] (B.15)

e3! = —D;, + au} + av}
— —p L? =
€3] = (Bu. + Bu) + N11 + au; +aug + avz + avg
R.t.

s — Lz -—B
633 = —Azz (R,t.) + 033

'} A L3 » [
€3] = —4,, (E-'?E) — aug — avg



N
e3; = —Azg (-R.T) + aug + avg

3} = aug + av;
—=B

37 = —Cj3

€33 = aug + avg

(B.16)

€3} = —aug — avg.

After eliminating the second terms in Eqgs. (4.4.38) and (4.4.41) and the first terms

in Eqgs. (4.4.39) and (4.4.42) and dividing each of the resulting set of six equations

through by the coefficient of the highest order derivative appearing in each equation,
the system can be cast in the desired form (Eq. (4.4.45)) where

{U}= 1 (ﬁ';f)"' ) (B.17)

3 s

and ! indicates differentiation with respect to §;. The resulting nonzero terms of the
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16-by-16 matrix [B] are

By2=10
_ cl{cZ{
1 elfe2] — e1fe2!
e2fe1f
32,3 = — 5%~ 42

el{cZ{ - el{e2,f
el{eZ{ - e2{e1{

By = -
elfe2] — e1]ea!
elfe2f — e2fe1f
Bas = ——r ol —oiloa!
ell 322 - 612 621
B el.{c2{
9 ==
: c1{e2{ - cl{eZ{
eZ{cl{
Bon = 77
By s = e1£c22f
24 e1fe2] — e1fe2]
B3 (=10
By =— el{e2{ 7
’ elfe2] — e1fe2!
Bys=— ezgclfi
' elfe2] — e1]e2!
61{82{ - e1{e21’
Bue =it
s = _el{e2:{ - e2{el{
’ elfe2] — e1]e2!
' elfe2] — e1fe2]
o1t
e2gel
Biu=- —

cl{eZ{ - el{eZ{
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Buo = elfe2]
b el{e2f — e1]e2!
Bg’g =1.0
Bs7r=1.0
Bz =1.0
e3]
By = ——%
o e3]
e3!
Bgy=-——2
8,4 83{
e3!
Bgs = ——%
€J
e3]
Baqp=~—-—2
&7 e3{
!
e3
Bs 10 = ——3
8,10 731-
e3!
Bs,12 = ___9f
e
e3]
Bg 3 = ——=%
8,13 3{
f
ed
Bg s = ——2
8,15 e3{



By10 =1.0

Buoo = elie2;
100 = 12625 — e13e2}
B _ e2gell
10,115 12628 — €152}
Bio1s = _eljeZ; —e2iel}
' elie2} —elje2]
Bio1s = _e1562§ —e23¢el]
' elie2s — elje2!
Buo = el7e2;
1017 711628 — elje2]
Bios = — e2gell
’ elle2) —elje2]
Bios = — elge2;
' elje2) —elje2]
B2 =10
Biao = — elge2]
' elfe2) — elje2]
Bian = — e2gely
' elle2) —elje2]
Bioie = _elje2 - elje2;
' elje2; — elje2]
Big s = _elje2; — e2jell
' elje2] — elje2]
Bz = - elic?i_
' elie2; —elje2]
Biza3 = — e2ieli
’ el{e2) — elje2]
Biz,6 = — elge2i
' elje2] —elje2]
B34 =10

Bu,15=1.0
Bis,6 = 1.0
Big,10 = —Eg%
Bysa2 = —'ng%
Biea3 = -Eg—i
Big,15 = —i%g'
Bys2 = -Eg%
Bygs = —-:fg—i
Bigs = —E%
Bis71 = —E%

(B.18)

Finally, neglecting the presence of any initial geometric imperfection, the only nonzero

term of the vector {F} is

(B.19)



Appendix C
ELEMENT STIFFNESS AND GEOMETRIC STIFFNESS MATRICES FOR
A CYLINDRICAL SHELL FINITE ELEMENT

As described in section 2 of Chapter S, the finite element model of the second
variation of the nondimensional total potential energy for the cylindrical shell finite

element can be written as

T = ZE WK W) + W TIRGHW ) + 8T (C)
where 6211}, , is the second variation of the nondimensional total potential energy of
the loads applied to the boundaries (£ = £ ) and (£ = ?H) and {W*} is the vector of
nondimensional element nodal buckling displacements and rotations (see Eq. (5.2.49))

where
(wey={ {v1} {vi} {w1} {U2} {v2} (w2} }". (C2)
[K*] is the element stiffness matrix given by
K= [ (BUTIClBdE, (C3)
&
where (C4)
F{n)T {0 {0}7 T(0) K (1) A () X
07 {07  Z@m)T {7 -B{¥:)}T  {0)T
0 #FW)T -8{&)T {07 {0)7
o {0 -H@)T o {7 {0
(ORI (U A5 () SR (7 G ) S 5
{07 {0}" {0}7 {07 {0}T 28 {%)T
BU=1 o7 0 F e @7 o
{07  p{m}  {0)7 {07 {0}T  Z{Q,)7T
B{@}" {07 {0} {0} F{W)T {0}
{07 {07 {0}7 07 {0} —&{)T
{07 {07 {07 {0} {0}T B ()"
7 {0 -28F ()T {07 {07
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and {®,}, {®:}, {¥1}, {¥2}, {1} and {9} are the interpolation functions given in
Eq. (5.2.49), B is given in Eq. (5.2.44), Z = L?/(Rt,) where L is the length, R is
the radius to the middle surface, and ¢, is the total thickness of the cylindrical shell.

The matrix [C] is
_fte1 [0
[C]—[lﬁl [cl]”

(C.5)

where [ ¢ ] is given in Eq. (5.2.39). [K&] is the elemental geometric stiffness matrix

given by
4

K} =3 _IKE]
=1

where
o © O O 0 0 7
TEIL
KE=l@ ol 10 [ [ O
o o o [ 0 [
o [ KZIT [0 [ (KZ

[ a {"Q‘ } {i‘_’—‘}T + Tt ()} ()7

—et1

w= [
3

1

d¢, ) Ld¢,

-I

[K%;2]=Al Nu:p [{dﬂz} ()" - {3?:}{ 2} WdEl

K%)= gﬁ [ﬁu {‘;‘;’ } {%‘E’—:}T + Naaf? {00} {Qz}T] &,

and -4l

€y _
K] = /? (B2T(C]IB1E,

I
Ky = JQ (BYT(C]|B2)dE,

&
Kgi= [ 1B2ATICYBAE,

&
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(€.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)



where Wy, and Ny are the applied nondimensional axial and torsional loads and N;
is the prebuckling nondimensional hoop stress resultant. [B2] is given by

{0} {0} [ + | £1)T ()T (07 Ul
)7 {7 {0} {0} {0)7 {0}
{0)7 {07 {0} {0} {0)T - [ + &] B10)"
{0}7 {0}7 {0} {0} {0)7 {0}
{0} {0}7 {0} {0} {0)T (0}

o | OO {0} {0}7 {0} {0}

)7 {07 {0} O} {0} [+ B] &)
{0)7 {0)7 {7 {0)7 {0)7 {0}
O ()T [+ 2| s)T 0 ()7 {0)7
{0} {0}7 {0} {0} {0} {0}
{0}7 {0)7 {0} {0} {0} {0}

{0} {07 {0} {0} {0)" {0} J

(C.14)

where @3 is the nondimensional prebuckling radial displacement and %, is the nondi-
mensional initial geometric imperfection given in Eq. (4.1.25). Note that [K¢] and
[K&) are symmetric and [K*) is positive definite. The dimension of these matrices de-
pends upon the type of interpolation used for Uy, Us, V, and V; it is 16-by-16 for
Lagrange linear interpolations, 20-by-20 for Lagrange quadratic interpolations and 24-
by-24 for Lagrange cubic interpolations.
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Appendix D
ELEMENT STIFFNESS AND GEOMETRIC STIFFNESS MATRICES FOR
AN ANNULAR PLATE FINITE ELEMENT

As described in section 3 of chapter 5, the finite element model of the second
variation of the nondimensional total potential energy for the annular plate finite ele-

ment can be written as

I = Ry + TOVVTIRGHW Y + 0T (D)

where 6210}, is the second variation of the nondimensional total potential energy of
the loads applied to the boundaries (£ = )and (= ') and {W*} is the vector of
nondimensional element nodal buckling displacements and rotations (see Eq. (5.3.24))

where

wey={ {vw1} {vwi1} {wwi} {Uw2} {VW2} (wwz2} 7.

(D.2)
[K¢] is the element stiffness matrix given by
et - =
= [ BB - ZEE, (D3)
where
[B1] = [[B1A][B1B]] (D.4)
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[B14] =

[B1B] =

)T o) )7

~L{$:}7/R3 {0}7 {0}"

7  Fw)T+L{n})'/RB5 {0)T

{0} {0y —Him)T
{0}T {0}T {BlA}s,
T 0 T {O}T
0" 07 (07
{0}™ AW} /3 {0}7
B{®.}7/3 {0}T {0}T
) T O}T
oW W
{0}T {0}T {Bl1A}12,3
{0}T {0}T {0}T
{0}T -B{¥2}7/3 {0}T
-B{®:}7 /3 {0}T {0}T
' T 0\T
o w
{0}* {0}T {B1B}s,s
;%;{éz}T {0}T {0}T
~L{%;}T/Rs {0}T {0}T

OF  E{n)T+ L@ /R (o)

{0)" U — ()"
0}7 {0}T {B1B},3
for {0)" {0)”
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L-

{BlA}s3 = -‘;;- @) + —1';‘—_3, {%}T (D.8)
{BlA}as = o ()" -2 {%}T (D.9)
(B1B}es = 22 (00} + 2 {df }T (D.20)
{B1B}13 = __2 {92} + = {%?—’} (D.11)

and {$,}, {®2}, {¥1}, {¥2}, {1} and {Q,} are the interpolation functions given
in Eq. (5.3.24), B is given in Eq. (5.3.23), L is the length and R is the radius of the
middle surface of the cylindrical shell. The matrix [C] is

_[tel [0]

where [ c ] is given in Eq. (5.3.19). [K¢] is the elemental geometric stiffness matrix

given by ,
K5 = Y [KE) (D13)
j=1
where
N T I N - B
EEYar
Kel=| W wEr o ke o (P19
e N I
R I R s
11 E:H ﬁ 2 Tl (=\47
= [ [Fud e0ie)7| o0& (D15)
131
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el

(K] = /; [Ful® @ )| 00,
K] = ‘éa“ [an_lz. (%)2 {¥:}{¥, }T] (3)dE,

, o+ _
KH= [ | Faf(@) @ (1) 0,

(K& = )L [ 1 {3?: } {%}T +J_V'22§—: {S} {QI}T] (3)dE,

i [ ot (o) o]
(K4 = L [Nn (#:}(82)"| O,

(K& = / [sz ( )2{‘1’2} {‘I’z}T] (3)dE,

(K& = J[_ [Wu {‘f;’ } { d—%’ll}r +Tv‘,2§—: (R} {9,}"] (3)dE,
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I -
K%)= j? (B2IT(CI[B1](3)dE,
I _
K3 = /? (BT (CI(B2(G)E,

kY] =

-1

=e+1

e b 2 §

&

I3 -
/_ B2]T(C)[B2AG)dE,

(D.24)

(D.25)

(D.26)

where N; and N3 are the nondimensional radial and circumferential prebuckling

stress resultants. [B2] is given by

[ {0}T
{0}™
{0}”
{0}T
o
{0}”
{0}T
{0}7
{0}T

{0}T
{0}

[B2] =

o (BT {0

{0}7
{0}7
{0}”
o
{0}7
{0}7
{0}7
{0}7

{0}7
{0}7

{0)”
{0)”
{0}7
{0}”
{0)"
(0"
()7
§ )"
{07

{0}”
{0}7

{0}7
{0}7
{0}7
{0}7
{0}7
{o}”
{0}7
{0}”
{0}”

{0}”
{0}7

{0}7
{0}7
{0}7
{o}™
o
{0}"
{0}7
{0)7
{0}”

{0}7
{0}7

()"
)7
—4(F YT
()T
{0)T
{0)”
(B (2)T
()"
"
{0)7

{0}7
{0}”

(D.27)

where % is the nondimensional prebuckling out-of-plane displacement. [K*] and [K &l

are symmetric and [K*] is positive definite. The dimension of these matrices depends
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upon the type of interpolation used for UW,, UW,, VW, and VW,; it is 16-by-16
for Lagrange linear interpolations, 20-by-20 for Lagrange quadratic interpolations and
24-by-24 for Lagrange cubic interpolations.
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Appendix E
LDLT DECOMPOSITION OF A SYMMETRIC MATRIX

For the symmetric matrix [M] there exists a factorization of [M]
[M] = [L] (D] [Z]” (E.1)

where [L] is a lower triangular matrix with all diagonal terms equal to 1.0 and [D] is a
diagonal matrix. If M;; is an element of [M] then from Eq. (E.1)

J
M;; = E Lik di Lk (E?.)
k=1

where 1;; is the ijth term of the [L] matrix and d; is the kth diagonal term of the [D]

matrix. Eq. (E.2) can be rewritten as

j—1
M.'j = l,'j dj ljj + Z Lix di ljk (E3)
k=1
but,
l;; =10 (E-4)
hence,
j—1
Mij = 3 liedelji
iy = ——= : (E.5)
f]

Setting j = i in Eq. (E.3) yields

i-1
My =Lidilii + ) lindila (E-6)
k=1
thus, using Eq. (E.4) with j =1,
i-1
d; = Mii - Z Lik di Li. (E.7)
k=1
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Now let
My = lix di. (E.8)

Substituting Eq. (E.8) into Eq. (E.7) produces

-1
di=Mii— Y Mula. (E.9)
k=1

Substituting Egs. (E.4) and (E.8) into Eq. (E.3) and solving for M;; yields

-1
M,‘,‘ = M;; - Z M,’g Lik. (E.10)
k=1

Also, substituting Eq. (E.8) into Eq. (E.5) yields

Jj=1 _
M- Myl
k=1
lij = g,

(E.11)

Finally, solving for M;; in Eq. (E£.10) and substituting the result into Eq. (E.11)
yields )
b= 2. (E.12)
The banded nature of [M] allows for very rapid factorization. From Eq. (E.9)

d; = M;; — M,‘]I.’l - Mgzlgz - -i(i—l)li(i-l) (E.13)
but from Eq. (E£.10)

M, = M;
My = Mz — Myl
(E.14)

M) = MyG_yy — Mal_1y — Malio1y = - .. — MiGi—a)l(i-1)(i-2)-

As a consequence of the symmetry of [M], in any row ¢ only terms up to the ith col- -
umn are needed for the factorization. Furthermore, from Eq. (E.14) it can be seen that
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if, say M;, through M;, are all zero where n < ¢ — 1, then M;, through M;,, are also

all zero so that d; can be written as
d; = Mii = Minsnlint1) = Mitns)lin42) =+ = Vi(i—1)lii-1) (E.15)

where n + 1 indicates the first nonzero column in row i of [M]. Hence, only terms
within the half bandwidth of each row of [M] need to be considered during the factor-
ization. This liberty to ignore all terms outside of the half bandwidth of each row of
[M] in the calculation of [D] yields a substantial savings in the amount of computer
time needed to perform the LDLT decomposition of [M] = [K(n:) + Kg(ni; A)] in

section 6.6.1.
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